135 research outputs found

    Macroscopic Dynamics of Neural Networks with Heterogeneous Spiking Thresholds

    Full text link
    Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural population activity. These models provide an essential tool for studying brain function at different scales; however, for their application to neural populations on large scale, they need to account for differences between distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain dynamics in heterogeneous networks. Here, we derive the mean-field equations for networks of all-to-all coupled Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron network. To this end, we focus on three important features of the Izhikevich model that are subject here to simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics. The model is comprised of biophysical state variables and parameters, incorporates realistic spike resetting conditions, and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the model as well as for a direct comparison to experimental data.Comment: 13 pages, 4 figure

    Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity

    Get PDF
    Low-dimensional descriptions of neural network dynamics are an effective tool for bridging different scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for networks of coupled oscillators have sparked the development of a new generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and applications. These extensions include different forms of short-term adaptation (STA) considered to play an important role in generating and sustaining dynamic regimes of interest in the brain. It is an open question, however, whether the incorporation of pre-synaptic forms of synaptic plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same method. Here, we discuss this problem using an established model of short-term synaptic plasticity at the single neuron level, for which we present two different approaches for the derivation of the mean-field equations. We compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate description of the network dynamics, although they are mathematically more involved. Using bifurcation analysis, we find that QIF networks with pre-synaptic short-term plasticity can express regimes of periodic bursting activity as well as bi-stable regimes. Together, we provide novel insight into the macroscopic effects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for future investigations of such networks.Comment: 15 pages, 7 figure

    Domain Aligned CLIP for Few-shot Classification

    Full text link
    Large vision-language representation learning models like CLIP have demonstrated impressive performance for zero-shot transfer to downstream tasks while largely benefiting from inter-modal (image-text) alignment via contrastive objectives. This downstream performance can further be enhanced by full-scale fine-tuning which is often compute intensive, requires large labelled data, and can reduce out-of-distribution (OOD) robustness. Furthermore, sole reliance on inter-modal alignment might overlook the rich information embedded within each individual modality. In this work, we introduce a sample-efficient domain adaptation strategy for CLIP, termed Domain Aligned CLIP (DAC), which improves both intra-modal (image-image) and inter-modal alignment on target distributions without fine-tuning the main model. For intra-modal alignment, we introduce a lightweight adapter that is specifically trained with an intra-modal contrastive objective. To improve inter-modal alignment, we introduce a simple framework to modulate the precomputed class text embeddings. The proposed few-shot fine-tuning framework is computationally efficient, robust to distribution shifts, and does not alter CLIP's parameters. We study the effectiveness of DAC by benchmarking on 11 widely used image classification tasks with consistent improvements in 16-shot classification upon strong baselines by about 2.3% and demonstrate competitive performance on 4 OOD robustness benchmarks.Comment: To appear at WACV 202

    The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 statement

    Get PDF
    We developed a reporting guideline to provide authors with guidance about what should be reported when writing a paper for publication in a scientific journal using a particular type of research design: the single-case experimental design. This report describes the methods used to develop the Single-Case Reporting guideline In BEhavioural interventions (SCRIBE) 2016. As a result of 2 online surveys and a 2-day meeting of experts, the SCRIBE 2016 checklist was developed, which is a set of 26 items that authors need to address when writing about single-case research. This article complements the more detailed SCRIBE 2016 Explanation and Elaboration article (Tate et al., 2016) that provides a rationale for each of the items and examples of adequate reporting from the literature. Both these resources will assist authors to prepare reports of single-case research with clarity, completeness, accuracy, and transparency. They will also provide journal reviewers and editors with a practical checklist against which such reports may be critically evaluated. We recommend that the SCRIBE 2016 is used by authors preparing manuscripts describing single-case research for publication, as well as journal reviewers and editors who are evaluating such manuscripts.Funding for the SCRIBE project was provided by the Lifetime Care and Support Authority of New South Wales, Australia. The funding body was not involved in the conduct, interpretation or writing of this work. We acknowledge the contribution of the responders to the Delphi surveys, as well as administrative assistance provided by Kali Godbee and Donna Wakim at the SCRIBE consensus meeting. Lyndsey Nickels was funded by an Australian Research Council Future Fellowship (FT120100102) and Australian Research Council Centre of Excellence in Cognition and Its Disorders (CE110001021). For further discussion on this topic, please visit the Archives of Scientific Psychology online public forum at http://arcblog.apa.org. (Lifetime Care and Support Authority of New South Wales, Australia; FT120100102 - Australian Research Council Future Fellowship; CE110001021 - Australian Research Council Centre of Excellence in Cognition and Its Disorders)Published versio

    Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils

    Full text link
    Mixtures of ideal polymers with hard spheres whose diameters are smaller than the radius of gyration of the polymer, exhibit extensive immiscibility. The interfacial tension between demixed phases of these mixtures is estimated, as is the barrier to nucleation. The barrier is found to scale linearly with the radius of the polymer, causing it to become large for large polymers. Thus for large polymers nucleation is suppressed and phase separation proceeds via spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial tension along the coexistence curve and its relation to the Ginzburg criterion

    Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P

    Get PDF
    Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-L-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for arginine glycosylation by EarP. As EarP is essential for pathogenicity in P. aeruginosa, our study provides the basis for targeted inhibitor design

    Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers

    Full text link
    A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded volume interactions, the density of monomers at the critical point for demixing decreases as one over the square root of the length of the polymer, while the density of spheres tends to a constant. This is very different to the behaviour of mixtures of hard spheres and ideal polymers, these mixtures although even less miscible than those with polymers with excluded volume interactions, have a much higher polymer density at the critical point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers, from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure

    Phase behaviour of a model of colloidal particles with a fluctuating internal state

    Get PDF
    Colloidal particles are not simple rigid particles, in general an isolated particle is a system with many degrees of freedom in its own right, e.g., the counterions around a charged colloidal particle.The behaviour of model colloidal particles, with a simple phenomenological model to account for these degrees of freedom, is studied. It is found that the interaction between the particles is not pairwise additive. It is even possible that the interaction between a triplet of particles is attractive while the pair interaction is repulsive. When this is so the liquid phase is either stable only in a small region of the phase diagram or absent altogether.Comment: 12 pages including 4 figure

    Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review

    Get PDF
    Livestock meat and offal contribute significantly to human nutrition as sources of high‐quality protein and micronutrients. Livestock products are increasingly in demand, particularly in low‐ and middle‐income settings where economies are growing and meat is increasingly seen as an affordable and desirable food item. Demand is also driving intensification of livestock keeping and processing. An unintended consequence of intensification is increased exposure to zoonotic agents, and a contemporary emerging problem is infection with Campylobacter and Salmonella spp. from livestock (avian and mammalian), which can lead to disease, malabsorption and undernutrition through acute and chronic diarrhoea. This can occur at the farm, in households or through the food chain. Direct infection occurs when handling livestock and through bacteria shed into the environment, on food preparation surfaces or around the house and surroundings. This manuscript critically reviews Campylobacter and Salmonella infections in animals, examines the factors affecting colonization and faecal shedding of bacteria of these two genera as well as risk factors for human acquisition of the infection from infected animals or environment and analyses priority areas for preventive actions with a focus on resource‐poor settings
    corecore