12 research outputs found

    Transfer of carbon incubation parameters to model the SOC and SON dynamics of a field trial with energy crops applying digestates as organic fertilizers

    Get PDF
    The fertilization with organic amendments and digestates from biogas plants is increasingly used to increase carbon stock and to improve the soil quality, but little is still known about their long-term effects. A common method to analyse organic amendments and their mineralization is incubation experiments, where amendments get incubated with soil while CO2 release is measured over time. In a previous study, carbon models have been applied to model the carbon dynamics of incubation experiments. The derived parameters describing the carbon turnover of the CCB model (CANDY Carbon Balance) are used to simulate the SOC and SON dynamics of a long-term field trial. The trial was conducted in Berge (Germany) where organic amendments like slurry, farmyard manure or digestates were systematically applied. To grant a higher model flexibility, the amounts of crop residues were calculated for roots and stubble separately. Furthermore, the mineralization dynamics of roots and stubble are considered by the model parameters for each crop. The model performance is compared when using the dry matter and carbon content received from the field trial and the incubation experiments, to evaluate the transferability. The results show that the incubation parameters are transferable to the field site, with rRMSE < 10% for the modelled SOC and rRMSE between 10% and 15% for the SON dynamics. This approach can help to analyse long-term effects of unexplored and unusual organic fertilizers under field conditions, whereat the model is used to upscale the C dynamics from incubation experiments, considering environmental conditions.Fachagentur Nachwachsende Rohstoffe http://dx.doi.org/10.13039/501100010812HELMHOLTZ‐ZENTRUM FUR UMWELTFORSCHUNG UFZ.Peer Reviewe

    Simulating the soil phosphorus dynamics of four long‐term field experiments with a novel phosphorus model

    Get PDF
    Phosphorus is a nonrenewable resource, which is required for crop growth and to maintain high yields. The soil P cycle is very complex, and new model approaches can lead to a better understanding of those processes and further guide to research gaps. The objective of this study was to present a P-submodel, which has been integrated in the existing Carbon Candy Balance (CCB) model that already comprises a C and N module. The P-module is linked to the C mineralization and the associated C-pools via the C/P ratio of fresh organic material. Besides the organic P cycling, the module implies a plant-available P-pool (Pav), which is in a dynamic equilibrium with the nonavailable P-pool (Pna) that comprises the strongly sorbed and occluded P fraction. The model performance was tested and evaluated on four long-term field experiments with mineral P fertilization, farmyard manure as organic fertilizer and control plots without fertilization. The C dynamics and the Pav dynamics were modelled with overall good results. The relative RMSE for the C was below 10% for all treatments, while the relative RMSE for Pav was below 15% for most treatments. To accommodate for the rather small variety of available P-models, the presented CNP-model is designed for agricultural field sites with a relatively low data input, namely air temperature, precipitation, soil properties, yields and management practices. The CNP-model offers a low entry threshold model approach to predict the C-N and now the P dynamics of agricultural soils.Fachagentur Nachwachsende Rohstoffe http://dx.doi.org/10.13039/501100010812Peer Reviewe

    Simulating the soil phosphorus dynamics of four long‐term field experiments with a novel phosphorus model

    No full text
    Phosphorus is a nonrenewable resource, which is required for crop growth and to maintain high yields. The soil P cycle is very complex, and new model approaches can lead to a better understanding of those processes and further guide to research gaps. The objective of this study was to present a P‐submodel, which has been integrated in the existing Carbon Candy Balance (CCB) model that already comprises a C and N module. The P‐module is linked to the C mineralization and the associated C‐pools via the C/P ratio of fresh organic material. Besides the organic P cycling, the module implies a plant‐available P‐pool (Pav), which is in a dynamic equilibrium with the nonavailable P‐pool (Pna) that comprises the strongly sorbed and occluded P fraction. The model performance was tested and evaluated on four long‐term field experiments with mineral P fertilization, farmyard manure as organic fertilizer and control plots without fertilization. The C dynamics and the Pav dynamics were modelled with overall good results. The relative RMSE for the C was below 10% for all treatments, while the relative RMSE for Pav was below 15% for most treatments. To accommodate for the rather small variety of available P‐models, the presented CNP‐model is designed for agricultural field sites with a relatively low data input, namely air temperature, precipitation, soil properties, yields and management practices. The CNP‐model offers a low entry threshold model approach to predict the C‐N and now the P dynamics of agricultural soils.Fachagentur Nachwachsende Rohstoffe http://dx.doi.org/10.13039/50110001081
    corecore