1,791 research outputs found

    Solitons and kinks in a general car-following model

    Full text link
    We study a car-following model of traffic flow which assumes only that a car's acceleration depends on its own speed, the headway ahead of it, and the rate of change of headway, with only minimal assumptions about the functional form of that dependence. The velocity of uniform steady flow is found implicitly from the acceleration function, and its linear stability criterion can be expressed simply in terms of it. Crucially, unlike in previously analyzed car-following models, the threshold of absolute stability does not generally coincide with an inflection point in the steady velocity function. The Burgers and KdV equations can be derived under the usual assumptions, but the mKdV equation arises only when absolute stability does coincide with an inflection point. Otherwise, the KdV equation applies near absolute stability, while near the inflection point one obtains the mKdV equation plus an extra, quadratic term. Corrections to the KdV equation "select" a single member of the one-parameter set of soliton solutions. In previous models this has always marked the threshold of a finite- amplitude instability of steady flow, but here it can alternatively be a stable, small-amplitude jam. That is, there can be a forward bifurcation from steady flow. The new, augmented mKdV equation which holds near an inflection point admits a continuous family of kink solutions, like the mKdV equation, and we derive the selection criterion arising from the corrections to this equation.Comment: 25 page

    The Goldberger -- Treiman Relation, gAg_A and gπNNg_{\pi NN} at T0T\neq 0

    Full text link
    The Goldberger-Treiman relation is shown to persist in the chiral limit at finite temperatures to order O(T2)O(T^2). The TT dependence of gAg_A turns out to be the same as for FπF_{\pi}, gA(T)=gA(0)(1T2/12F2)g_{A}(T)=g_{A}(0)(1-T^2/12F^2), while gπNNg_{\pi NN} is temperature independent to this order. The baryon octet D{\cal D} and F{\cal F} couplings also behave as FπF_{\pi} if only pions are massless in the pseudoscalar meson octet.Comment: 7p, NSF-ITP-93-145, BUTP-93/27, PUTP-1433, November 199

    Can one see the number of colors in eta, eta-prime --> pi^+ pi^- gamma?

    Full text link
    We investigate the decays eta, eta-prime --> pi^+ pi^- gamma up to next-to-leading order in the framework of the combined 1/N_c and chiral expansions. Counter terms of unnatural parity at next-to-leading order with unknown couplings are important to acommodate the results both to the experimental decay width and the photon spectrum. The presence of these coefficients does not allow for a determination of the number of colors from these decays.Comment: 8 pages, 2 figure

    Sigma-term physics in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model (PCQM) at one loop to analyse meson-baryon sigma-terms. Analytic expressions for these quantities are obtained in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core). Our result for the piN sigma term of about 45 MeV is in good agreement with the value deduced by Gasser, Leutwyler and Sainio using dispersion-relation techniques and exploiting the chiral symmetry constraints.Comment: 19 pages, LaTeX-file, 2 Figure

    Critical Analysis of Baryon Masses and Sigma-Terms in Heavy Baryon Chiral Perturbation Theory

    Full text link
    We present an analysis of the octet baryon masses and the πN\pi N and KNKN σ\sigma--terms in the framework of heavy baryon chiral perturbation theory. At next-to-leading order, O(q3){\cal O}(q^3), knowledge of the baryon masses and σπN(0)\sigma_{\pi N}(0) allows to determine the three corresponding finite low--energy constants and to predict the the two KNKN σ\sigma--terms σKN(1,2)(0)\sigma^{(1,2)}_{KN} (0). We also include the spin-3/2 decuplet in the effective theory. The presence of the non--vanishing energy scale due to the octet--decuplet splitting shifts the average octet baryon mass by an infinite amount and leads to infinite renormalizations of the low--energy constants. The first observable effect of the decuplet intermediate states to the baryon masses starts out at order q4q^4. We argue that it is not sufficient to retain only these but no other higher order terms to achieve a consistent description of the three--flavor scalar sector of baryon CHPT. In addition, we critically discuss an SU(2) result which allows to explain the large shift of σπN(2Mπ2)σπN(0)\sigma_{\pi N}(2M_\pi^2) - \sigma_{\pi N}(0) via intermediate Δ(1232)\Delta (1232) states.Comment: 18 pp, TeX, BUTP-93/05 and CRN-93-0

    Parity-Violating Electron Scattering and Neucleon Structure

    Get PDF
    The measurement of parity violation in the helicity dependence of electron-nucleon scattering provides unique information about the basic quark structure of the nucleons. In this review, the general formalism of parity-violating electron scattering is presented, with emphasis on elastic electron-nucleon scattering. The physics issues addressed by such experiments is discussed, and the major goals of the presently envisioned experimental program are identified. %General aspects of the experimental technique are reviewed and A summary of results from a recent series of experiments is presented and the future prospects of this program are also discussed.Comment: 45 pages, 9 figure

    Pion Mass Effects in the Large NN Limit of \chiPT

    Get PDF
    We compute the large NN effective action of the O(N+1)/O(N)O(N+1)/O(N) non-linear sigma model including the effect of the pion mass to order mπ2/fπ2m^2_{\pi}/f_{\pi}^2. This action is more complex than the one corresponding to the chiral limit not only because of the pion propagators but also because chiral symmetry produce new interactions proportional to mπ2/fπ2m^2_{\pi}/f_{\pi}^2. We renormalize the action by including the appropriate counter terms and find the renormalization group equations for the corresponding couplings. Then we estudy the unitarity propierties of the scattering amplitudes. Finally our results are applied to the particular case of the linear sigma model and also are used to fit the pion scattering phase shifts.Comment: FT/UCM/18/9

    Stringent constraints on the scalar K pi form factor from analyticity, unitarity and low-energy theorems

    Get PDF
    We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t=0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher order ChPT corrections at the second Callan-Treiman point.Comment: 5 pages latex, uses EPJ style files, 3 figures, replaced with version accepted by EPJ

    Two loops calculation in chiral perturbation theory and the unitarization program of current algebra

    Get PDF
    In this paper we compare two loop Chiral Perturbation Theory (ChPT) calculation of pion-pion scattering with the unitarity second order correction to the current algebra soft-pion theorem. It is shown that both methods lead to the same analytic structure for the scattering amplitude.Comment: 13 pages, Revtex 3.0, no figures, submitted to Phys. Lett.

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to K3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the K3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, K3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear β\beta-decays
    corecore