59 research outputs found
Recommended from our members
Special Issue on geophysics applied to detection and discrimination of unexploded ordnance
Unexploded ordnance (UXO) presents serious problems in Europe, Asia, as well as in the United States. Explosives and mines from World War I and World War II still turn up at European and Asian construction sites, backyard gardens, beaches, wildlife preserves and former military training grounds. The high rate of failure among munitions from 60-90 years ago is cited as one of the main reasons for such a high level of contamination. Apart from war activities, military training has resulted in many uncovered ordnance. It is especially true in the United States, where most UXO has resulted from decades of military training, exercises, and testing of weapons systems. Such UXO contamination prevents civilian land use, threatens public safety, and causes significant environmental concern. In light of this problem, there has been considerable interest shown by federal, state, and local authorities in UXO remediation at former U.S. Department of Defense sites. The ultimate goal of UXO remediation is to permit safe public use of contaminated lands. A Defense Science Board Task Force Report from 1998 lists some 1,500 sites, comprising approximately 15 million acres, that potentially contain UXO. The UXO-related activity for these sites consists of identifying the subareas that actually contain UXO, and then locating and removing the UXO, or fencing the hazardous areas off from the public. The criteria for clearance depend on the intended land end-use and residual hazard risk that is deemed acceptable. Success in detecting UXO depends on the ordnance's size, metal content, and depth of burial, as well as on the ability of geophysical systems to detect ordnance in the presence of metallic fragments from exploded UXO and other metal clutter
Demonstration Report: ESTCP UXO Discrimination Study ESTCP PROJECT # MM-0838
In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation will require demonstration to regulators of not only individual technologies, but of an entire decision making process. This characterization study was be the second phase in what is expected to be a continuing effort that will span several years. The FY06 Defense Appropriation contained funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program (ESTCP). ESTCP responded by conducting a UXO Discrimination Study at the former Camp Sibert, AL. The results of this first demonstration were very encouraging. Although conditions were favorable at this site, a single target of interest (4.2-in mortar) and benign topography and geology, all of the classification approaches demonstrated were able to correctly identify a sizable fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. To build upon the success of the first phase of this study, ESTCP sponsored a second study in 2009 at the former Camp San Luis Obispo, CA, a site with more challenging topography and a wider mix of targets-of-interest (TOI). There were two primary objectives of this study: (1) Test and validate detection and discrimination capabilities of currently available and emerging technologies on real sites under operational conditions; and (2) Investigate in cooperation with regulators and program managers how discrimination technologies can be implemented in cleanup operations
Recommended from our members
West Coast Regional Carbon Sequestration Partnership - Report on Geophysical Techniques for Monitoring CO2 Movement During Sequestration
The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model
Recommended from our members
A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration
Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m
Recommended from our members
Geophysical Techniques for Monitoring CO2 Movement During Sequestration
The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model
CO2 rock physics modeling for reliable monitoring of geologic carbon storage
Monitoring, verification, and accounting (MVA) are crucial to ensure safe and long-term geologic carbon storage. Seismic monitoring is a key MVA technique that utilizes seismic data to infer elastic properties of CO2-saturated rocks. Reliable accounting of CO2 in subsurface storage reservoirs and potential leakage zones requires an accurate rock physics model. However, the widely used CO2 rock physics model based on the conventional Biot-Gassmann equation can substantially underestimate the influence of CO2 saturation on seismic waves, leading to inaccurate accounting. We develop an accurate CO2 rock physics model by accounting for both effects of the stress dependence of seismic velocities in porous rocks and CO2 weakening on the rock framework. We validate our CO2 rock physics model using the Kimberlina-1.2 model (a previously proposed geologic carbon storage site in California) and create time-lapse elastic property models with our new rock physics method. We compare the results with those obtained using the conventional Biot-Gassmann equation. Our innovative approach produces larger changes in elastic properties than the Biot-Gassmann results. Using our CO2 rock physics model can replicate shear-wave speed reductions observed in the laboratory. Our rock physics model enhances the accuracy of time-lapse elastic-wave modeling and enables reliable CO2 accounting using seismic monitoring
Berkeley UXO Discriminator (BUD)
The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve. Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range
Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization
We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in Northeastern Iceland, and Coso Hot Springs in California, USA. The Coso field is a high temperature reservoir similar to Krafla in Iceland. Each area is a locus of significant geothermal energy production. The complex geology of these sites also makes them excellent targets for developing and testing of strategies for joint imaging of magnetotelluric (MT) and micro-earthquake (MEQ) data. Our ultimate aim is to construct coupled 3D resistivity and velocity models of these geothermal systems and use them to better understand and exploit them.Lawrence Berkeley National Laboratory (Subcontract 6927716
Geothermal Play Fairway Analysis, Part 2: GIS Methodology
Play Fairway Analysis (PFA) in geothermal exploration originates from a systematic methodology developed within the petroleum industry and is based on a geologic, geophysical, and hydrologic framework of identified geothermal systems. We tailored this methodology to study the geothermal resource potential of the Snake River Plain and surrounding region, but it can be adapted to other geothermal resource settings. We adapted the PFA approach to geothermal resource exploration by cataloging the critical elements controlling exploitable hydrothermal systems, establishing risk matrices that evaluate these elements in terms of both probability of success and level of knowledge, and building a code-based ‘processing model’ to process results. A geographic information system was used to compile a range of different data types, which we refer to as elements (e.g., faults, vents, heat flow, etc.), with distinct characteristics and measures of confidence. Discontinuous discrete data (points, lines, or polygons) for each element were transformed into continuous interpretive 2D grid surfaces called evidence layers. Because different data types have varying uncertainties, most evidence layers have an accompanying confidence layer which reflects spatial variations in these uncertainties. Risk layers, as defined here, are the product of evidence and confidence layers, and are the building blocks used to construct Common Risk Segment (CRS) maps for heat, permeability, and seal, using a weighted sum for permeability and heat, but a different approach with seal. CRS maps quantify the variable risk associated with each of these critical components. In a final step, the three CRS maps were combined into a Composite Common Risk Segment (CCRS) map, using a modified weighted sum, for results that reveal favorable areas for geothermal exploration. Additional maps are also presented that do not mix contributions from evidence and confidence (to allow an isolated view of evidence and confidence), as well as maps that calculate favorability using the product of components instead of a weighted sum (to highlight where all components are present). Our approach helped to identify areas of high geothermal favorability in the western and central Snake River Plain during the first phase of study and helped identify more precise local drilling targets during the second phase of work. By identifying favorable areas, this methodology can help to reduce uncertainty in geothermal energy exploration and development
- …