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Introduction 

Because of their wide application within the petroleum industry it is natural to consider 

geophysical techniques for monitoring of CO2 movement within hydrocarbon reservoirs, 

whether the CO2 is introduced for enhanced oil/gas recovery or for geologic 

sequestration.  Among the available approaches to monitoring, seismic methods are by 

far the most highly developed and applied.  Due to cost considerations, less expensive 

techniques have recently been considered.  In this article, the relative merits of gravity 

and electromagnetic (EM) methods as monitoring tools for geological CO2 sequestration 

are examined for two synthetic modeling scenarios.  The first scenario represents 

combined CO2 enhanced oil recovery (EOR) and sequestration in a producing oil field, 

the Schrader Bluff field on the north slope of Alaska, USA.  The second scenario is a 

simplified model of a brine formation at a depth of 1,900 m.   

 

The feasibility of each geophysical technique depends on magnitude of the change in the 

measured geophysical property produced by increasing the concentration of CO2, and on 

the inherent resolution of the technique.  Furthermore, their applicability also depends on 
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the measurement configuration.  EOR/sequestration projects in general, and Schrader 

Bluff project in particular, are characterized by relatively thin injection intervals with 

multiple fluid components (oil, hydrocarbon gas, brine, and CO2).  This setting represents 

the most geophysically difficult end member of a complex and wide spectrum of possible 

sequestration scenarios.   

 

Gravity methods are a measure of density, electrical methods primarily respond to earth 

material resistivity, and seismic methods depend on both density and elastic moduli.  

These physical properties are generally well known for CO2, typical reservoir fluids, and 

various combinations of both (NIST, 1992), and therefore it is possible to assess expected 

changes in geophysical properties.  CO2 is resistive, and thus electrical methods are 

candidates in brine bearing formations.  For most of the depth interval of interest for 

sequestration, CO2 is less dense and more compressible than brine or oil; therefore, 

gravity and seismic methods are reasonable candidate methods for brine or oil bearing 

formations.  At shallow depths and lower pressures, CO2 has gas-like properties and none 

of the geophysical methods is a good candidate for monitoring CO2 within a shallow dry 

natural gas reservoir.  Even in this case, however, since brine formations are commonly 

found above gas reservoirs, geophysical methods could still be useful for leak detection.  

Research continues to refine the information available on the influence of varying CO2 

saturations on seismic and electrical properties. 

 

The bulk rock density Dbulk of the reservoir is calculated using 

2 2 2bulk w CO grain w brine CO COD (1 S S )D S D S D= − − + +    (1) 
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where, Sw is the brine saturation, SCO2 is the CO2 saturation, Dgrain is the grain density, 

Dbrine is the brine density and DCO2 is the CO2 density.  We neglect the density effect of 

CO2 dissolved in the brine.  Quartz sand grains (Dgrain = 2650 kg/m3) are assumed.  The 

electrical resistivity of reservoir rocks is highly sensitive to changes in water saturation, 

as can be seen from Archie’s Law (Archie, 1942), which has been shown to accurately 

describe the electrical resistivity of sedimentary rocks as a function of water saturation 

(Sw), porosity (φ), and pore fluid resistivity (ρbrine).  All petroleum fluids (oil, condensate, 

and hydrocarbon gas) as well as CO2 are electrically resistive; hence Archie’s Law is 

appropriate for any combination of oil, hydrocarbon gas, condensate, or CO2 (Figure 1).  

The bulk resistivity is plotted on a log scale to span the large range of resistivity values as 

a function of the gas saturation (Figure 1).  This high sensitivity to water saturation in a 

reservoir can be exploited by electromagnetic (EM) techniques where the response is a 

function of the rock bulk electrical resistivity.   
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Figure 1. Reservoir bulk resistivity (ρrock) (in Ωm) as a function of gas saturation (Sg) (Sg 
= 1 - Sw) for a reservoir with brine resistivity equivalent to sea water (ρbrine = 0.33 
Ωm) with 25% porosity.   

 

Schrader Bluff Model 

The Schrader Bluff reservoir is a sandstone unit with about 30% porosity, between 25 

and 30 m thick, at a depth of 1,100–1,400 m.  The reservoir unit gently dips to the east, 

with major faulting running mainly north-south.  Faulting includes two faults with offsets 

in excess of 75 m cut the reservoir, and several smaller subparallel faults.  Preliminary 

evaluations of the Schrader Bluff reservoir show that a CO2–based EOR could increase 

oil recovery by up to 50% over water-flooding (Hill et al., 2000).  Furthermore, studies 

concluded that up to 60% of the CO2 injected as part of the EOR scheme would remain in 

the reservoir.  Time-lapse models of the reservoir were run at initial conditions and 5-

year increments out to 2035.  A water-after-gas (WAG) injection strategy was 

considered, which produces complicated spatial variations in both SCO2 and Sw within the 

reservoir over time.  Numerical flow simulations of the CO2 injection process were 

converted to geophysical models using petrophysical models developed from well log 

data.  These coupled flow simulation – geophysical models allow comparison of the 

performance of monitoring techniques over time on realistic 3D models by generating 

simulated responses at different times during the CO2 injection process.  These time-lapse 

measurements of the reservoir are used to produce time-lapse changes in geophysical 

properties that can be related to the movement of CO2 within the injection interval.   
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Gravity Modeling 

In our simulations, the peak-to-peak change in the vertical attraction of gravity (Gz) at the 

ground surface between 2020 and initial conditions is on the order of 2 µGal, which 

would be in the noise level of a field survey using current technology (Hare et al., 1999; 

Brown et al., 2002).  The changes in the vertical gradient of gravity (dGz/dz) between 

initial conditions and 20 years into the CO2 injection scheme are approximately 0.01 

Eötvös units (EU), also below the noise level of current instruments.  Gravity anomalies 

decay with the inverse square of the distance from their source so high spatial variations 

in the net density changes within the reservoir are expressed as a subdued response at the 

surface and only show large-scale changes. 

 

Access to boreholes enables gravity measurements to be made closer to the reservoir, 

thus reducing the distance to the target compared to observations made on the surface.  

As expected the calculated magnitude of change in both Gz and dGz/dz is larger than for 

surface measurements, although only the change in Gz would be measurable in the 

boreholes with current commercial technology.  It should be noted however, that work on 

more sensitive borehole Gz and dGz/dz meters is ongoing and has the potential to 

significantly lower the sensitivity of such devices in the near future (Thomsen et al., 

2003).  However, access through only the existing injection wells would substantially 

reduce the data coverage (Figure 2a).  For comparison, Figure 2b shows the net change in 

CO2 saturation.  Gz map (Figure 2a) was generated using a minimum curvature algorithm 

for data interpolation; however it is representative of the general features present in all of 

the other types of interpolation tested.  In general, interpretation of the interpolated Gz 
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changes from the existing 23 boreholes would lead to an over estimate of the CO2 

saturation changes in the reservoir.  This problem is particularly evident at the north end 

of the reservoir where increased CO2 saturation at two isolated wells produces an 

interpolated image that would be interpreted as increased CO2 between the wells where 

none exists.  Borehole measurements need to be used in conjunction with some form of 

surface measurement to guide the interpolation between wells.  Alternatively, pressure 

testing between wells could provide estimates of spatial variations in permeability that 

could be used to condition, in a statistical sense, interpolation of the borehole gravity 

data.  Many possibilities exist for combining the borehole data with other information in 

order to produce more accurate maps of change within the reservoir.  

 

       

Figure 2. (a) Plan view of the change in Gz (µGal) at a depth of 1,200 m (above the 
reservoir in this section of the field) between initial conditions and 20 years into CO2 
injection using 23 wells indicated by red dots. (b) Plan view of the net change in SCO2 
(1 being 100% CO2, and 0 being 0% CO2) within the reservoir between initial 
condition and 20 years into CO2 injection. 

 

Because density changes within the reservoir are caused by a combination of CO2, water, 

and oil saturation changes as the WAG injection proceeds, a one-to-one correlation in 

 6



space does not exist between the net change in SCO2 and the change in Gz.  On a large 

scale, however, a correlation does exist between the change in Gz and the net change in 

SCO2.  For example, the largest changes in SCO2 occur in the southwest quadrant of the 

field, where the largest change in Gz occurs.  This scenario, injecting CO2 into an oil 

reservoir with multiple fluid components, is the worst case for using gravity to directly 

map changes in SCO2.  In the case of CO2 injection into a brine formation, there would 

only be water and CO2, and the net changes in density within the reservoir would directly 

correlate with the net changes in SCO2, as would the change in Gz at the surface. 

 

 

Electromagnetic Modeling 

The electrical resistivity of reservoir rocks is highly sensitive to changes in Sw.  This high 

sensitivity to Sw in a reservoir can be exploited by EM techniques, in which the response 

is a function of the earth’s electrical resistivity.  One technique uses a grounded electric 

dipole energized with an alternating current at a given frequency to produce time-varying 

electric and magnetic fields that can be measured on the earth’s surface.  In this one 

configuration the electric dipole consists of two steel electrodes (1 m2 plates or sections 

of drill pipe) buried at a shallow depth (1–10 m) separated by 100 m and connected by 

cable to a low-power generator (a portable 5,000 W generator is sufficient).  The 

measured data consist of the electric field at a given separation from the transmitter, 

acquired on the surface or within the near surface.  This approach combines both relative 

ease of deployment with high sensitivity to reservoirs of petroleum scale and depth.   
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The change in the electric field amplitude at a constant source-receiver offset of 2 km for 

the same interval is overlaid as black contour lines, with peak-to-peak amplitude of 1.2% 

(Figure 3).  There is a direct one-to-one correspondence between the change in Sw and the 

change in the electric field amplitude.  Even though the signal level is low, it can be 

measured and interpreted given the signal-to-noise ratio of the data.  This potentially low-

cost monitoring technique is best suited for CO2–brine systems in which a one-to-one 

correlation exists between the change in Sw and the change in SCO2 (since Sw + SCO2 = 1).  

In a petroleum reservoir such as Schrader Bluff, the presence of hydrocarbons eliminates 

the one-to-one correlation between changes in Sw and changes in SCO2.  The correlation 

between changes in SCO2 and changes in the electric field amplitude are not as evident as 

those between changes in Sw and the electric field data.   

 

 

Figure 3. Color contours of the net change in water saturation over the vertical interval of 
the reservoir between initial conditions and 2020.  The change in the amplitude of the 
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electric field from an electric dipole source at a separation of 2 km is overlaid as 
black contours.  The peak-to-peak change in electric field amplitude is 1.2%.  Note 
the direct correlation between decreases in the electric field amplitude and increases 
in water saturation (decreased electric resistivity of the reservoir).  Black dots show 
locations of injection wells. 

 

Brine Formation Model 

To study the sensitivity of gravity and EM measurements to the presence of CO2 in a 

brine formation, we created a model with a 20 m thick target layer at a depth of 1,900 m 

with porosity of 20% and variable CO2 and water saturations.  The properties (density 

and bulk modulus) of the CO2 were calculated assuming hydrostatic pressure at 1,900 m 

and a temperature of 70°C using the NIST14 code.  CO2 is in a gas phase at these 

pressure and temperature conditions, and the density estimates at 1,900 m are based on 

these calculations. 

 

 

Figure 4. The bulk rock density for quartz sand with 20% porosity at 70°C as a function 
of depth (assuming hydrostatic pressure) for three different saturations of brine and 
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CO2, from left to right, 70% CO2 – 30% brine, 30% CO2– 70% brine and 100% brine.  
Reservoir depth is 1,900 m. 

 

Gravity Modeling 

The vertical component of gravity response (Gz) is defined as the difference between the 

model with and without the quarter space of CO2 saturated reservoir.  When SCO2 is 

changed by 30%, the bulk density of the reservoir changes by 1.3% (Figure 5).  The 1.3% 

bulk density change produces an approximate 20 µGal change in Gz (Figure 6).  The 10 

µGals contour defines the edge of the structure.  This signal can be measured using 

current technologies.  A 5-10 µGal and 3.5 µGal survey accuracy have been reported for 

gravity surveys at Prudhoe Bay, Alaska.  A repeatability of 2.5 µGal and detection 

threshold of 5 µGal for time-lapse variations was observed in gravity monitor surveys of 

the Sleipner CO2 sequestration site in the North Sea.  To consider the sensitivity of the 

vertical component of gravity to lateral changes in the CO2-brine front, the model (Figure 

5) was modified so that the CO2-brine interface was displaced 1 km to the southeast.  

This movement of the CO2-brine produces about a 10 µGal gravity change in Gz (Figure 

7). 
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Figure 5. Plan view of a density field (kg/m3) at the top of the reservoir (depth of 1,900 
m) as a function of x and y coordinates for the model with CO2 and water saturation 
of 30% and 70%, respectively, at the southeast quadrant, and 100% water saturation 
everywhere else.   
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Figure 6. Surface vertical component of gravity (Gz) response of a reservoir with 30% 
CO2 and 70% brine saturation at the southeast quadrant and 100% brine saturation 
everywhere else. 

 

 

Figure 7. Difference in the vertical component of the gravity (Gz) response produced by 
moving the CO2-brine interface by 1 km to the southeast. 

 

A 10% change in CO2 saturation produces about a 6 µGal response.  The maximum 

response for a model with 90% CO2 saturation and 10% water saturation is about 55 

µGals (Figure 8).  On the other end, a model with 10% CO2 saturation and 90% water 

saturation gives 8 µGals response, likely on the edge of detectability in the field.  For 

practical considerations, a model with 20% CO2 and 80% water would be at the lower 

limit of detection.   
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Figure 8. Gravity response (µGal) as a function of CO2 saturation for the model shown in 
Figure 5. 

 

Inversion of gravity data is very important, since construction of density contrast models 

significantly increases the amount of information that can be extracted from the gravity 

data.  However, one substantial difficulty with the inversion of gravity data is its inherent 

non-uniqueness and lack of inherent depth resolution.  This difficulty can be overcome by 

introduction of a priori information.  Some authors prescribe the density variations and 

invert for the geometrical parameters of the model, others assume a constant density 

contrast and invert for the position of a polyhedral body from isolated anomalies.  In 

another approach, gravity data is inverted directly by minimizing an objective function of 

the density model that is subject to fitting the observations.  This approach also 

incorporates prior information via a reference model and depth weighting.  We adopted 

an approach described for magnetotelluric data inversion, in which the top and base of 

the reservoir are known, and we invert for density variation inside the reservoir.  The 

inversion result is a cumulative density change in the reservoir as a function of x and y 
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coordinates (Figure 9).  The inversion clearly identifies the anomalous zone, and the 

density change was recovered within 30% of the true value.  This was also found true for 

the data that contain 2.5 µGal random noise.  The level of uncertainty in density 

estimation would decrease if the reservoir is thicker. 

 

 

Figure 9. Density change (in kg/m3) recovered by inversion of the difference in vertical 
component of the surface gravity response shown in Figure 7 as a function of x and y 
coordinates.   

 

Electromagnetic Modeling 

The same EM system described in the Schrader Bluff study was used here.  We 

calculated the electric field on the surface of the model (Figure 10) using 13 100 m 

electric dipoles operating at 1 Hz, with measurements of the resulting electric field at a 

range of separations in-line with the transmitting dipole.  For each of the transmitter 

dipoles, separated by 1,000 m, a response was calculated along the entire profile with 

receivers separated by 500 m.   
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Figure 10. Plan view of resistivity (Ohm-m) at a depth of 1,900 m as a function of x and 
y coordinates for the model, with CO2 on the right and brine on the left. Diamonds 
indicate transmitter locations, while dots indicate receiver locations.  

 

Calculations show that the contact produces an 8% anomaly at an offset of 2 km (Figure 

11).  Given the signal strength and the expected natural electric field spectrum, we expect 

to make electric field amplitude measurements on the order of 1%.  Thus, the anomalies 

produced by the CO2-brine contact should be measurable.  If the contact is moved 500 m 

to the east in the model (Figure 10) and the fields (Figure 11) are differenced we produce 

percent changes suggesting that a movement of the contact would produce 2% changes in 

the measured electric fields at offsets of 1 km (Figure 12).  Thus the dipole-dipole 

controlled source EM system should be able to monitor movement of the CO2-brine 

contact on the order of 500 m. 

 

 15



 

Figure 11. Percent change in the electric field measured in-line with the transmitter 
dipole as a function of source-receiver offset (Y) and source-receiver midpoint 
position (X).  The change pertains to the model shown in Figure 10. 
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Figure 12.  Percent change in the inline electric field amplitudes as the CO2-brine contact 
moves 500 m east in the model shown in Figure 10. 

 

Conclusions 

Both gravity and EM measurements were modeled for two scenarios, a Schrader Bluff 

EOR model and a brine formation model.  The injection of CO2 produces a bulk density 

decrease in the reservoir, that in turn produces a reduction in the gravitational attraction 

from the reservoir.  The spatial pattern of the change in the vertical component of gravity 

(Gz), as well as the vertical gradient of gravity (dGz/dz), is directly correlated with the net 

change in reservoir density.   

 

Schrader Bluff represents the most difficult case of possible sequestration scenarios, 

because of the relatively thin injection interval and the multiple fluid components 

resulting from the WAG injection strategy.  Changes in the vertical component of gravity 

on the surface caused by CO2 injection over a 20-year period were below the level of 

repeatability for current field surveys.  However, measurements made in boreholes just 

above the reservoir interval are sensitive enough to observe measurable changes in Gz as 

CO2 injection proceeds.  Such measurements made in numerous wells could map the 

areas of net density changes caused by injected CO2 and water within the reservoir.   

 

For the CO2-brine interface within a 20 m thick reservoir at 1,900 m depth, 30% CO2 and 

70% brine saturation produces a 20 µGal response compared to the model without the 

CO2.  Changes in the CO2 saturation of 10% produce changes in the vertical component 

of gravity of approximately 6 µGal.  Based on the published literature, we would expect 
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that repeatability of time-lapse measurements would be on the order of 3 to 4 µGals.  

This means that a 10% change in CO2 saturation would be the limit of detectability.  We 

would also expect to be able to see lateral movement of the CO2-brine front on the order 

of 500 m from the changes in the vertical component of gravity.   

 

The electrical resistivity of rocks is primarily a function of porosity and water saturation.  

When the porosity is known, or can reasonably be assumed to have small spatial 

variation, changes in electrical resistivity are directly related to changes in water 

saturation.  EM techniques can be used to map such spatial variations in electrical 

resistivity.  While the electromagnetic response from an easily deployable field system 

for the Schrader Bluff model is low, an amplitude change of approximately 8% occurs 

over the CO2 –brine contact.  The ability to observe this difference would depend on the 

signal-to-noise ratio of the data.  Lateral resolution of contact movement would be 

expected to be on the order of 500 m, based on 2% change in the electric field amplitudes 

produced by a 500 m movement of the contact. 

 

The nonseismic techniques presented here show promise as low-cost supplements to 

seismic monitoring justifying further evaluation and testing under a wider range of 

conditions.  Borehole gravity measurements should be used in conjunction with pressure 

test data and/or surface seismic data to provide a basis for statistical interpolation of 

predicted changes in SCO2.  3D seismic acquisition could be limited to a single pre-

injection survey in this case.  Future plans should incorporate field demonstration of the 
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EM technique and a study of resolution that can be achieved by inversion of gravity and 

EM data. 
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