314 research outputs found

    Energy Calibration of the JLab Bremsstrahlung Tagging System

    Get PDF
    In this report, we present the energy calibration of the Hall B bremsstrahlung tagging system at the Thomas Jefferson National Accelerator Facility. The calibration was performed using a magnetic pair spectrometer. The tagged photon energy spectrum was measured in coincidence with e+ee^+e^- pairs as a function of the pair spectrometer magnetic field. Taking advantage of the internal linearity of the pair spectrometer, the energy of the tagging system was calibrated at the level of ±0.1\pm 0.1% E_\gamma. The absolute energy scale was determined using the e+ee^+e^- rate measurements close to the end-point of the photon spectrum. The energy variations across the full tagging range were found to be <3<3 MeV.Comment: 15 pages, 12 figure

    Current conservation in two-dimensional AC-transport

    Get PDF
    The electric current conservation in a two-dimensional quantum wire under a time dependent field is investigated. Such a conservation is obtained as the global density of states contribution to the emittance is balanced by the contribution due to the internal charge response inside the sample. However when the global partial density of states is approximately calculated using scattering matrix only, correction terms are needed to obtain precise current conservation. We have derived these corrections analytically using a specific two-dimensional system. We found that when the incident energy EE is near the first subband, our result reduces to the one-dimensional result. As EE approaches to the nn-th subband with n>1n>1, the correction term diverges. This explains the systematic deviation to precise current conservation observed in a previous numerical calculation.Comment: 12 pages Latex, submitted to Phys. Rev.

    Nonbackscattering Contribution to the Weak Localization

    Full text link
    We show that the enhancement of backscattering responsible for the weak localization is accompanied by reduction of the scattering in other directions. A simple quasiclassical interpretation of this phenomenon is presented in terms of a small change in the effective differential cross-section for a single impurity. The reduction of the scattering at the arbitrary angles leads to the decrease of the quantum correction to the conductivity. Within the diffusion approximation this decrease is small, but it should be taken into account in the case of a relatively strong magnetic field when the diffusion approximation is not valid.Comment: 18 pages, 6 figures, Submitted to PR

    Threshold Hyperon Production at COSY-11

    Get PDF
    The Lambda, Sigma0 and Sigma+ hyperon production in NN collisions is studied at the COSY - 11 installation in order to investigate the production mechanism as well as to extract information about the Y-N interaction.Comment: 3 pages, 2 figure

    Weakly nonlinear quantum transport: an exactly solvable model

    Get PDF
    We have studied the weakly non-linear quantum transport properties of a two-dimensional quantum wire which can be solved exactly. The non-linear transport coefficients have been calculated and interesting physical properties revealed. In particular we found that as the incoming electron energy approaches a resonant point given by energy E=ErE=E_r, where the transport is characterized by a complete reflection, the second order non-linear conductance changes its sign. This has interesting implications to the current-voltage characteristics. We have also investigated the establishment of the gauge invariance condition. We found that for systems with a finite scattering region, correction terms to the theoretical formalism are needed to preserve the gauge invariance. These corrections were derived analytically for this model.Comment: 15 pages, LaTeX, submitted to Phys. Rev.

    First direct evidence of chalcolithic footwear from the near eastern highlands

    Get PDF
    Abstract In 2008, a well preserved and complete shoe was recovered at the base of a Chalcolithic pit in the cave of Areni-1, Armenia. Here, we discuss the chronology of this find, its archaeological context and its relevance to the study of the evolution of footwear. Two leather samples and one grass sample from the shoe were dated at the Oxford Radiocarbon Accelerator Unit (ORAU). A third leather sample was dated at the University of California-Irvine Accelerator Mass Spectrometry Facility (UCIAMS). The R_Combine function for the three leather samples provides a date range of 3627-3377 Cal BC (95.4% confidence interval) and the calibrated range for the straw is contemporaneous (3627-3377 Cal BC). The shoe was stuffed with loose, unfastened grass (Poaceae) without clear orientation which was more than likely used to maintain the shape of the shoe and/or prepare it for storage. The shoe is 24.5 cm long (European size 37), 7.6 to 10 cm wide, and was made from a single piece of leather that wrapped around the foot. It was worn and shaped to the wearer&apos;s right foot, particularly around the heel and hallux where the highest pressure is exerted in normal gait. The Chalcolithic shoe provides solid evidence for the use of footwear among Old World populations at least since the Chalcolithic. Other 4 th millennium discoveries of shoes (Italian and Swiss Alps), and sandals (Southern Israel) indicate that more than one type of footwear existed during the 4 th millennium BC, and that we should expect to discover more regional variations in the manufacturing and style of shoes where preservation conditions permit

    Anomalously large critical regions in power-law random matrix ensembles

    Full text link
    We investigate numerically the power-law random matrix ensembles. Wavefunctions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger than the system size. The Green's functions decrease with distance as a power law with an exponent related to the correlation dimension.Comment: RevTex, 4 pages, 4 eps figures. Final version to be published in Phys. Rev. Let

    Single parameter scaling in one-dimensional localization revisited

    Full text link
    The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with random site energies distributed according to the Cauchy distribution. We find a new significant scaling parameter in the system, and derive an exact analytical criterion for single parameter scaling which differs from the commonly used condition of phase randomization. The results obtained are applied to the Kronig-Penney model with the potential in the form of periodically positioned δ\delta-functions with random strength.Comment: Phys. Rev. Lett. 84, 2678 (2000
    corecore