805 research outputs found

    Heat transport in stochastic energy exchange models of locally confined hard spheres

    Full text link
    We study heat transport in a class of stochastic energy exchange systems that characterize the interactions of networks of locally trapped hard spheres under the assumption that neighbouring particles undergo rare binary collisions. Our results provide an extension to three-dimensional dynamics of previous ones applying to the dynamics of confined two-dimensional hard disks [Gaspard P & Gilbert T On the derivation of Fourier's law in stochastic energy exchange systems J Stat Mech (2008) P11021]. It is remarkable that the heat conductivity is here again given by the frequency of energy exchanges. Moreover the expression of the stochastic kernel which specifies the energy exchange dynamics is simpler in this case and therefore allows for faster and more extensive numerical computations.Comment: 21 pages, 5 figure

    Classical dynamics on graphs

    Full text link
    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator which generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms which decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs which converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    Thermodynamic time asymmetry in nonequilibrium fluctuations

    Get PDF
    We here present the complete analysis of experiments on driven Brownian motion and electric noise in a RCRC circuit, showing that thermodynamic entropy production can be related to the breaking of time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry breaking can be expressed in terms of dynamical entropies per unit time, one for the forward process and the other for the time-reversed process. These entropies per unit time characterize dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations. Their difference gives the well-known thermodynamic entropy production, which thus finds its origin in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and experimen

    Quantum fingerprints of classical Ruelle-Pollicot resonances

    Full text link
    N-disk microwave billiards, which are representative of open quantum systems, are studied experimentally. The transmission spectrum yields the quantum resonances which are consistent with semiclassical calculations. The spectral autocorrelation of the quantum spectrum is shown to be determined by the classical Ruelle-Pollicot resonances, arising from the complex eigenvalues of the Perron-Frobenius operator. This work establishes a fundamental connection between quantum and classical correlations in open systems.Comment: 6 pages, 2 eps figures included, submitted to PR

    Chaotic Quantum Decay in Driven Biased Optical Lattices

    Full text link
    Quantum decay in an ac driven biased periodic potential modeling cold atoms in optical lattices is studied for a symmetry broken driving. For the case of fully chaotic classical dynamics the classical exponential decay is quantum mechanically suppressed for a driving frequency \omega in resonance with the Bloch frequency \omega_B, q\omega=r\omega_B with integers q and r. Asymptotically an algebraic decay ~t^{-\gamma} is observed. For r=1 the exponent \gamma agrees with qq as predicted by non-Hermitian random matrix theory for q decay channels. The time dependence of the survival probability can be well described by random matrix theory. The frequency dependence of the survival probability shows pronounced resonance peaks with sub-Fourier character.Comment: 7 pages, 5 figure

    Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis

    Full text link
    The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204 (2004)] suggest that the impurity does not contribute significantly to the dynamics of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. The (r,τr,\tau) entropy, which measures the amount of information generated by unit time at different scales τ\tau of time and rr of the observable, is numerically computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy impurity for various values of the energy density ϵ\epsilon (energy per degree of freedom) of the system and some values of the impurity mass MM. Results obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.

    Exactly solvable model of quantum diffusion

    Get PDF
    We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band and interacting with its environment by a coupling in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wavenumber contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. On the other hand, an analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling.Comment: Submitted to J. Stat. Phy

    Bohr-Sommerfeld Quantization of Periodic Orbits

    Get PDF
    We show, that the canonical invariant part of â„Ź\hbar corrections to the Gutzwiller trace formula and the Gutzwiller-Voros spectral determinant can be computed by the Bohr-Sommerfeld quantization rules, which usually apply for integrable systems. We argue that the information content of the classical action and stability can be used more effectively than in the usual treatment. We demonstrate the improvement of precision on the example of the three disk scattering system.Comment: revte
    • …
    corecore