11 research outputs found

    A Multi-Bandwidth Reconfigurable Patch Antenna for Devices in WLAN and UWB Technology Applications

    Get PDF
    This article introduces a process to design, simulate, and measure a novel multi-band patch antenna with different operation modes, i.e., band centers and bandwidths. Switching between operation modes is possible using a pair of PIN diodes to connect different parts of the antenna with the main antenna patch. Such a reconfigurable design allows for individual control of each frequency range. The main operation mode of the resulting antenna has an impedance bandwidth with two bands, one from 2.4 GHz to 2.73 GHz and another from 3.4 GHz to 5.73 GHz, with a maximum gain of 4.85 dBi and stable radiation patterns. The resulting antenna is suitable for applications using both ultra-wideband technologies and wireless local-area network (WLAN) technologiesProject eSAFE-UAV PID2019-106120RB-C32 funded by MCIN/AEI/10.13039/501100011033European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 955816SCHLUMBERGER FOUNDATION awar

    The Pierre Auger Cosmic Ray Observatory

    Get PDF
    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants # 2010/07359-6 and # 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir ProgrammeANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant nos. ERA-NETASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant nos. 2013/08/M/ST9/00322, and 2013/08/M/ST9/00728 and HARMONIA 5 – 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE – Programa Operacional Factores de Competitividade through Fundação para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nos. 20/2012 and nr.194/2012, project nos. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011- 3-0062, the Minister of National Education, Programme for research – Space Technology and Advanced Research – STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educación y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant no. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract no. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107 and DE-SC0011689, National Science Foundation, Grant no. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant no. PIRSES-2009- GA-246806; and UNESCO.The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world׳s largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.Comision Nacional de Energia AtomicaFundacion AntorchasGobierno De La Provincia de MendozaMunicipalidad de MalargueNDM Holdings and Valle Las LenasAustralian Research CouncilNational Council for Scientific and Technological Development (CNPq)Ciencia Tecnologia e Inovacao (FINEP)Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2010/07359-6 1999/05404-3Ministerio de Ciencia e Tecnologia (MCT), BrazilMinistry of Education, Youth & Sports - Czech Republic LG13007 7AMB14AR005 CZ.1.05/2.1.00/03.0058Grant Agency of the Czech Republic Czech Republic Government 14-17501SCentre National de la Recherche Scientifique (CNRS)Region Ile-de-FranceDepartement Physique Nucleaire et Corpusculaire PNC-IN2P3/CNRSDepartement Sciences de l'Univers (SDU-INSU/CNRS)Institut Lagrange de ParisFrench National Research Agency (ANR) ANR-11-IDEX-0004-02 ANR-10-LABX-63Federal Ministry of Education & Research (BMBF)German Research Foundation (DFG)Finanzministerium Baden-WurttembergHelmholtz Alliance for Astroparticle Physics (HAP)Helmholtz AssociationMinisterium fur Wissenschaft und ForschungNordrhein WestfalenMinisterium fur WissenschaftForschung und KunstBaden-Wurttemberg, GermanyIstituto Nazionale Astrofisica (INAF)Istituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)Gran Sasso Center for Astroparticle Physics (CFA)CETEMPS Center of Excellence, ItalyConsejo Nacional de Ciencia y Tecnologia (CONACyT)Ministerie van OnderwijsCultuur en WetenschapNetherlands Organization for Scientific Research (NWO)FOM (The Netherlands) Netherlands GovernmentNational Centre for Research and Development ERA-NET-ASPERA/01/11 ERA-NET-ASPERA/02/11National Science Centre, Poland 2013/08/M/ST9/00322 2013/08/M/ST9/00728 HARMONIA 5 - 2013/10/M/ST9/00062Portuguese national fundsFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalRomanian Authority for Scientific Research ANCSCNDI-UEFISCDI 20/2012 194/2012 1/ASPERA2/2012 ERA-NET PN-II-RU-PD-2011-3-0145-17 PN-II-RU-PD-2011-3-0062Programme for research - Space Technology and Advanced Research - STAR, Romania 83/2013Slovenian Research Agency - SloveniaComunidad de Madrid Instituto de Salud Carlos IIIEuropean Union (EU)Spanish GovernmentXunta de GaliciaEuropean Community, Spain FP7-PEOPLE-2012-IEF-328826Science & Technology Facilities Council (STFC)United States Department of Energy (DOE) DE-AC02-07CH11359 DE-FR02-04ER41300 DE-FG02-99ER41107 DE-SC0011689National Science Foundation (NSF) 0450696Grainger Foundation, USANational Foundation for Science & Technology Development (NAFOSTED)Marie Curie-IRSES/EPLANETEuropean Particle Physics Latin American NetworkEuropean Union (EU) PIRSES-2009-GA-246806UNESC

    A Subcell Finite-Difference Time-Domain Implementation for Narrow Slots on Conductive Panels

    Get PDF
    Funded by the European Union under GA no 101101961-HECATE. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or Clean Aviation Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them. The project is supported by the Clean Aviation Joint Undertaking and its Members and, by Spanish Ministry of Science and Innovation (MICINN) under projects eSAFE-UAV PID2019-106120RB-C32; PID2019-106120RB-C33.Efficiently modeling thin features using the finite-difference time-domain (FDTD) method involves a considerable reduction in the spatial mesh size. However, in real-world scenarios, such reductions can lead to unaffordable memory and CPU requirements. In this manuscript, we present two stable and efficient techniques in FDTD to handle narrow apertures on conductive thin panels. One technique employs conformal methods, while the other utilizes subgridding methods. We validate their performance compared to the classical Gilbert-Holland model and present experimental results in reverberation environments to shed light on these models' actual confidence margins in real electromagnetic compatibility (EMC) scenarios.European Union (EU) 101101961HECATEClean Aviation Joint UndertakinSpanish Government eSAFE-UAV PID2019-106120RB-C32, PID2019-106120RB-C3

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

    Get PDF
    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6, No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project no. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, U.K.; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8  eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.Comision Nacional de Energia AtomicaFundacion AntorchasGobierno De La Provincia de MendozaMunicipalidad de MalargueNDM HoldingsValle Las LenasAustralian Research CouncilNational Council for Scientific and Technological Development (CNPq)Ciencia Tecnologia e Inovacao (FINEP)Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2010/07359-6 1999/05404-3Ministerio de Ciencia e Tecnologia (MCT), BrazilGrant Agency of the Czech Republic Czech Republic Government 14-17501SCentre National de la Recherche Scientifique (CNRS)Region Ile-de-FranceDepartement Sciences de l'Univers (SDU-INSU/CNRS)Institut Lagrange de ParisFrench National Research Agency (ANR) ANR-10-LABX-63 ANR-11-IDEX-0004-02Federal Ministry of Education & Research (BMBF)German Research Foundation (DFG)Finanzministerium Baden-WurttembergHelmholtz AssociationMinisterium fur Wissenschaft und ForschungNordrhein WestfalenMinisterium fur WissenschaftForschung und KunstBaden-Wurttemberg, GermanyIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)Gran Sasso Center for Astroparticle Physics (CFA)CETEMPS Center of Excellence, ItalyConsejo Nacional de Ciencia y Tecnologia (CONACyT)Ministerie van Onderwijs, Cultuur en WetenschapNetherlands Organization for Scientific Research (NWO)FOM (The Netherlands) Netherlands GovernmentNational Centre for Research and Development ERA-NET-ASPERA/01/11 ERA-NET-ASPERA/02/11National Science Centre, Poland 2013/08/M/ST9/00322 2013/08/M/ST9/00728 HARMONIA 5 - 2013/10/M/ST9/00062Portuguese national funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalRomanian Authority for Scientific Research ANCSCNDI-UEFISCDI 20/2012 194/2012 1/ASPERA2/2012 ERA-NET PN-II-RU-PD-2011-3-0145-17 PN-II-RU-PD-2011-3-0062Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, Romania 83/2013Slovenian Research Agency - SloveniaComunidad de Madrid Instituto de Salud Carlos IIIEuropean Union (EU)Spanish GovernmentXunta de GaliciaEuropean Community 7th Framework Program, Spain FP7-PEOPLE-2012-IEF-328826Science & Technology Facilities Council (STFC)United States Department of Energy (DOE) DE-AC02-07CH11359 DE-FR02-04ER41300 DE-FG02-99ER41107 DE-SC0011689National Science Foundation (NSF) 0450696Grainger Foundation, USANational Foundation for Science & Technology Development (NAFOSTED)European Union (EU) PIRSES-2009-GA-246806UNESCOMSMT-CR LG130077AMB14AR005CZ.1.05/2.1.00/03.005

    Impedance Modeling of Common Mode Ferrite Chokes Using Transmission Line Theory

    Get PDF
    An impedance model, based on transmission line (TL) theory, is introduced for common mode ferrite chokes. The proposed model takes into account the geometrical properties of the choke, the distribution of electromagnetic fields within the core material and the impact of the measurement setup. The validity of the model was tested through numerical simulations. As a practical application, the model was applied to estimate the complex permeability of MnZn and NiZn cores from impedance measurements, resulting in a range of values compatible with those reported in other works.Spanish National Project under Grant PID2022-137495OB-C31 (ESAMA).European project HECATE.Spanish MICINN EU FEDER Project under Grant PID2019.106120RB.C33.EU Horizon2020 Research and Innovation Programme under the Marie Sklodowska-Curie Action under Grant 101066571.Junta de Andalucia FEDER Project B-TIC700-UGR20

    A Multi-Bandwidth Reconfigurable Patch Antenna for Devices in WLAN and UWB Technology Applications

    No full text
    This article introduces a process to design, simulate, and measure a novel multi-band patch antenna with different operation modes, i.e., band centers and bandwidths. Switching between operation modes is possible using a pair of PIN diodes to connect different parts of the antenna with the main antenna patch. Such a reconfigurable design allows for individual control of each frequency range. The main operation mode of the resulting antenna has an impedance bandwidth with two bands, one from 2.4 GHz to 2.73 GHz and another from 3.4 GHz to 5.73 GHz, with a maximum gain of 4.85 dBi and stable radiation patterns. The resulting antenna is suitable for applications using both ultra-wideband technologies and wireless local-area network (WLAN) technologies
    corecore