4,195 research outputs found
Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?
Candida albicans and Candida dubliniensis are highly related pathogenic yeast species. However, C. albicans is far more prevalent in human infection and has been shown to be more pathogenic in a wide range of infection models. Comparison of the genomes of the two species has revealed that they are very similar although there are some significant differences, largely due to the expansion of virulence-related gene families (e.g., ALS and SAP) in C. albicans, and increased levels of pseudogenisation in C. dubliniensis. Comparative global gene expression analyses have also been used to investigate differences in the ability of the two species to tolerate environmental stress and to produce hyphae, two traits that are likely to play a role in the lower virulence of C. dubliniensis. Taken together, these data suggest that C. dubliniensis is in the process of undergoing reductive evolution and may have become adapted for growth in a specialized anatomic niche
Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp
Funding: This work was funded by the National Institutes of Allergy and Infectious Disease (AI113390, LCM) and the National Institutes of General Medical Sciences (GM62483, LCM). The funders had no role in study design, data collection and analysis, decision topublish, or preparation of the manuscript.Non peer reviewedPublisher PD
Manual therapy and cervical artery dysfunction: Identification of potential risk factors in clinical encounters
Cervical artery dysfunction is a reported potential risk associated with manual therapy applied to the cervical and cervicothoracic spine. While a variety of physical examination tests have been advocated to screen patients who may be at risk of adverse events during or after manipulation, their clinical utility is limited. This paper provides an overview of the literature and current thinking with regard to risk assessment and clinical action related to the application of manual and exercise therapy for the cervical and upper thoracic spine. © 201
Acetaldehyde Production by Rothia Mucilaginosa Isolates from Patients with Oral Leukoplakia.
Rothia mucilaginosa has been found at high abundance on oral leukoplakia (OLK). The ability of clinical isolates to produce acetaldehyde (ACH) from ethanol has not been investigated. The objective of the current study was to determine the capacity of R. mucilaginosa isolates recovered from OLK to generate ACH. Analysis of R. mucilaginosa genomes (n = 70) shows that this species does not normally encode acetaldehyde dehydrogenase (ALDH) required for detoxification of ACH. The predicted OLK metagenome also exhibited reduced ALDH coding capacity. We analysed ACH production in 8 isolates of R. mucilaginosa and showed that this species is capable of generating ACH in the presence of ethanol. The levels of ACH produced (mean = 53 µM) were comparable to those produced by Neisseria mucosa and Candida albicansin parallel assays. These levels were demonstrated to induce oxidative stress in cultured oral keratinocytes. This study shows that R. mucilaginosa can generate ACH from ethanol in vitro at levels which can induce oxidative stress. This organism likely contributes to oral ACH levels following alcohol consumption and the significance of the increased abundance of R. mucilaginosa in patients with potentially malignant disorders requires further investigation
Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans
<p>Abstract</p> <p>Background</p> <p>Invasion of host tissue by the human fungal pathogen <it>Candida albicans </it>is an important step during the development of candidosis. However, not all <it>C. albicans </it>strains possess the same invasive and virulence properties. For example, the two clinical isolates SC5314 and ATCC10231 differ in their ability to invade host tissue and cause experimental infections. Strain SC5314 is invasive whereas strain ATCC10231 is non-invasive and strongly attenuated in virulence compared to SC5314. In this study we compare the <it>in vitro </it>phenotypic, transcriptional and genomic profiles of these two widely used laboratory strains in order to determine the principal biological and genetic properties responsible for their differential virulence.</p> <p>Results</p> <p>In all media tested, the two strains showed the same metabolic flexibility, stress resistance, adhesion properties and hydrolytic enzyme secretion <it>in vitro</it>. However, differences were observed in response to cell-surface disturbing agents and alkaline pH. Furthermore, reduced hyphal formation in strain ATCC10231 under certain conditions correlated with reduced invasive properties in an <it>in vitro </it>invasion assay and a reduced ability to invade epithelial tissue. Despite these diverse phenotypic properties, no substantial genomic differences were detected by comparative genome hybridisation within the open reading frames. However, <it>in vitro </it>transcriptional profiling displayed major differences in the gene expression of these two strains, even under normal <it>in vitro </it>growth conditions.</p> <p>Conclusion</p> <p>Our data suggest that the reason for differential virulence of <it>C. albicans </it>strains is not due to the absence of specific genes, but rather due to differences in the expression, function or activity of common genes.</p
The Candida albicans-Specific Gene EED1 Encodes a Key Regulator of Hyphal Extension
The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues
Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA) regulated genes in mineralizing dental pulp cells at early and late time points
Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]). At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]). Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi) application to dental pulp cells (DPCs), which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]). In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO): GSE67175
Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance
Development of resistance and tolerance to antifungal drugs in Candida albicans can compromise treatment of infections caused by this pathogenic yeast species. The uniquely expanded C. albicans TLO gene family is comprised of 14 paralogous genes which encode Med2, a subunit of the multiprotein Mediator complex which is involved in the global control of transcription. This study investigates the acquisition of fluconazole tolerance in a mutant in which the entire TLO gene family has been deleted. This phenotype was reversed to varying degrees upon reintroduction of representative members of the alpha- and beta-TLO clades (i.e. TLO1 and TLO2), but not by TLO11, a gamma-clade representative. Comparative RNA sequencing analysis revealed changes in the expression of genes involved in a range of cellular functions, including ergosterol biosynthesis, mitochondrial function, and redox homeostasis. This was supported by the results of mass spectrometry analysis, which revealed alterations in sterol composition of the mutant cell membrane. Our data suggest that members of the C. albicans TLO gene family are involved in the control of ergosterol biosynthesis and mitochondrial function and may play a role in the responses of C. albicans to azole antifungal agents
Cataclysmic Variables from the Sloan Digital Sky Survey. VIII. The Final Year (2007–2008)
This paper completes the series of cataclysmic variables (CVs) identified from the Sloan Digital Sky Survey (SDSS) I/II. The coordinates, magnitudes, and spectra of 33 CVs are presented. Among the 33 are eight systems known prior to SDSS (CT Ser, DO Leo, HK Leo, IR Com, V849 Her, V405 Peg, PG1230+226, and HS0943+1404), as well as nine objects recently found through various photometric surveys. Among the systems identified since the SDSS are two polar candidates, two intermediate polar candidates, and one candidate for containing a pulsating white dwarf. Our follow-up data have confirmed a polar candidate from Paper VII and determined tentative periods for three of the newly identified CVs. A complete summary table of the 285 CVs with spectra from SDSS I/II is presented as well as a link to an online table of all known CVs from both photometry and spectroscopy that will continue to be updated as future data appear
3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum
Measurement of the coronal magnetic field is a crucial ingredient in
understanding the nature of solar coronal phenomena at all scales. We employed
STEREO/COR1 data obtained during a deep minimum of solar activity in February
2008 (Carrington rotation CR 2066) to retrieve and analyze the
three-dimensional (3D) coronal electron density in the range of heights from
1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced
structures of the coronal magnetic field. The 3D electron density analysis is
complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by
tomography for the same CR. A global 3D MHD model of the solar corona was used
to relate the reconstructed 3D density and emissivity to open/closed magnetic
field structures. We show that the density maximum locations can serve as an
indicator of current sheet position, while the locations of the density
gradient maximum can be a reliable indicator of coronal hole boundaries. We
find that the magnetic field configuration during CR 2066 has a tendency to
become radially open at heliocentric distances greater than 2.5 Rsun. We also
find that the potential field model with a fixed source surface (PFSS) is
inconsistent with the boundaries between the regions with open and closed
magnetic field structures. This indicates that the assumption of the potential
nature of the coronal global magnetic field is not satisfied even during the
deep solar minimum. Results of our 3D density reconstruction will help to
constrain solar coronal field models and test the accuracy of the magnetic
field approximations for coronal modeling.Comment: Published in "Solar Physics
- …