167 research outputs found

    555. Development of a Post-Exposure Treatment for Ebola Virus Infections Based on AAV Vectors and Zmapp Antibody Cocktail

    Get PDF
    The recent Ebola outbreak in West Africa has been the deadliest in the history. To prevent future recurrence of such outbreak, better treatments and effective vaccines against Ebola virus are desirable. Among such promising treatments, the Zmapp cocktail containing neutralizing antibodies (13C6, 2G4 and 4G7) has successfully treated some patients. However, the feasibility of using it on large populations especially in developing countries is questionable. To address this potential issue, we propose to employ recombinant vectors derived from adeno-associated virus (rAAV). There are several advantages of using rAAV: because of 1) their safety profile; 2) only one injection (or a few) would be required; 3) the high stability of lyophilized rAAVs at ambient temperature and; 4) the panel of available serotypes. Because of these interesting features, we are currently developing a treatment based on three rAAVs to deliver the genes for the Zmapp cocktail of antibodies. We have already produced at small scale a rAAV expressing the 2G4 antibody. The DNA sequences for the heavy chain and light chains were codon-optimized for better expression in humans and were designed to be expressed from the same gene. A strong promoter (CAG) resistant to silencing in vivo was chosen to drive gene expression of the antibody. The rAAV were produced by transfection using our patented cGMP compatible HEK293 cell line. The production was performed in suspension culture in the absence of serum. Secretion of 2G4 antibody by rAAV transduced cells (HEK293 and CHO cells) was confirmed. The results demonstrated that rAAV-CAG-2G4 was functional and allowed for the correct assembly of the heavy and light chains of 2G4. Purification of 200 mL of rAAV-CAG-2G4 production was performed by ultracentrifugation on an iodixanol density-step gradient. Two other rAAVs coding 13C6 and 4G7 antibodies are in the processed of being constructed and produced in a similar manner. We are also in the process of comparing the efficacy of two serotypes of AAV (9 and DJ) in mice by intranasal delivery. Using the best serotype, the rAAVs will be produced and purified from a starting suspension culture of 20 L. Their efficacy for treating Ebola infections will then be evaluated in a mouse model infected by the virus

    Production of rVSV-ZEBOV in serum-free suspension culture of HEK 293SF cells.

    Get PDF
    Abstract Ebola virus disease is an urgent international priority. Promising results for several vaccine candidates have been reported in non-human primate studies and clinical trials with the most promising being the rVSV-ZEBOV vaccine. In this study, we sought to produce rVSV-ZEBOV in HEK 293SF cells in suspension and serum-free media. The purpose of this study was to establish a process using the HEK 293SF production platform, optimise the production titre, demonstrate scalability and the efficiency of the generated material to elicit an immune reaction in an animal model. Critical process parameters were evaluated to maximize production yield and process robustness and the following operating conditions: 1–2 × 106 cells/mL grown in HyClone HyCell TransFx-H media infected at an MOI of 0.001 with a temperature shift to 34 °C during the production phase and a harvest of the product after 48 h. Using these conditions, scalability in a 3.5 L controlled bioreactor was shown reaching a titre of 1.19 × 108 TCID50/mL at the peak of production, the equivalent of 4165 doses of vaccine per litre. The produced virus was shown to be thermostable in the culture media and, when concentrated, purified and administered to mice, demonstrated the ability to induce a ZEBOV-specific immune response

    The Impact of Vitamin D on Dendritic Cell Function in Patients with Systemic Lupus Erythematosus

    Get PDF
    Excessive activity of dendritic cells (DCs) is postulated as a central disease mechanism in Systemic Lupus Erythematosus (SLE). Vitamin D is known to reduce responsiveness of healthy donor DCs to the stimulatory effects of Type I IFN. As vitamin D deficiency is reportedly common in SLE, we hypothesized that vitamin D might play a regulatory role in the IFNalpha amplification loop in SLE. Our goals were to investigate the relationship between vitamin D levels and disease activity in SLE patients and to investigate the effects of vitamin D on DC activation and expression of IFNalpha-regulated genes in vitro.In this study, 25-OH vitamin D (25-D) levels were measured in 198 consecutively recruited SLE patients. Respectively, 29.3% and 11.8% of African American and Hispanic SLE patient had 25-D levels <10 ng/ml. The degree of vitamin D deficiency correlated inversely with disease activity; R = -.234, p = .002. In 19 SLE patients stratified by 25-D levels, there were no differences between circulating DC number and phenotype. Monocyte-derived DCs (MDDCs) of SLE patients were normally responsive to the regulatory effects of vitamin D in vitro as evidenced by decreased activation in response to LPS stimulation in the presence of 1,25-D. Additionally, vitamin D conditioning reduced expression of IFNalpha-regulated genes by healthy donor and SLE MDDCs in response to factors in activating SLE plasma.We report on severe 25-D deficiency in a substantial percentage of SLE patients tested and demonstrate an inverse correlation with disease activity. Our results suggest that vitamin D supplementation will contribute to restoring immune homeostasis in SLE patients through its inhibitory effects on DC maturation and activation. We are encouraged to support the importance of adequate vitamin D supplementation and the need for a clinical trial to assess whether vitamin D supplementation affects IFNalpha activity in vivo and, most importantly, improves clinical outcome

    Evaluation of novel HIV vaccine candidates using recombinant vesicular stomatitis virus vector produced in serum-free Vero cell cultures.

    Get PDF
    Acquired Immune Deficiency Syndrome (AIDS) in humans is a result of the destruction of the immune system caused by Human Immunodeficiency Virus (HIV) infection. This serious epidemic is still progressing world-wide. Despite advances in treatment, a safe and effective preventive HIV vaccine is desired to combat this disease, and to save millions of lives. However, such a vaccine is not available yet although extensive amounts of resources in research and development have been invested over three decades. In light of the recently approved Ebola virus disease vaccine based on a recombinant vesicular stomatitis virus (rVSV-ZEBOV), we present the results of our work on three novel VSV-vectored HIV vaccine candidates. We describe the design, rescue, production and purification method and evaluate their immunogenicity in mice prior to preclinical studies that will be performed in non-human primates. The production of each of the three candidate vaccines (rVSV-B6-NL4.3Env/SIVtm, rVSV-B6-NL4.3Env/Ebtm and rVSV-B6-A74Env(PN6)/SIVtm) was evaluated in small scale in Vero cells and it was found that production kinetics on Vero cells vary depending on the HIV gp surface protein used. Purified virus preparations complied with the WHO restrictions for the residual DNA and host cell protein contents. Finally, when administered to mice, all three rVSV-HIV vaccine candidates induced an HIV gp140-specific antibody response

    Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks

    Get PDF
    BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combinedwith a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomicmarks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.The work presented in this paper has been supported by the Ministerio de Economía y Competitividad, Spain (SAF2016-78631-P), partly co-financed by FEDER funds of the European Union, the Gustaf den V:e-80-års Fond and the Swedish Association against Rheumatism to M.E.A-R. In addition, this work was financed by the NIH P01 grant P01-AI-083194 to C.D.L., J.B.H., R.K., and M.E.A-R. JBH: NIH grants: R01 AI024717, U01 HG00866, P30 AR070549 and U01 AI130830 and the US Department of Veterans Affairs: I01 BX001834.C.D.L.: Center for Public Health Genomics. R.K.: NIH grant R01-AR33062. J.A.J.: NIH grants U54GM104938, P30AR053483

    Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus

    Get PDF
    Leptin is abnormally elevated in the plasma of patients with systemic lupus erythematosus (SLE), where it is thought to promote and/or sustain pro-inflammatory responses. Whether this association could reflect an increased genetic susceptibility to develop SLE is not known, and studies of genetic associations with leptin-related polymorphisms in SLE patients have been so far inconclusive. Here we genotyped DNA samples from 15,706 SLE patients and healthy matched controls from four different ancestral groups, to correlate polymorphisms of genes of the leptin pathway to risk for SLE. It was found that although several SNPs showed weak associations, those associations did not remain significant after correction for multiple testing. These data do not support associations between defined leptin-related polymorphisms and increased susceptibility to develop SLE. © 2015 Elsevier Inc

    Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4

    Get PDF
    We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10-34, OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10-28, OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. © 2013 Manku et al

    Lupus risk variants in the PXK locus alter B-cell receptor internalization

    Get PDF
    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P &lt; 4.62 × 10-10, OR 0.81 (0.75 - 0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity
    • …
    corecore