4,719 research outputs found

    In situ N2O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

    Get PDF
    This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10/RD/SC/716 and 11S138).peer-reviewedRuminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N2O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N2O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N2O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N2O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N2O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U + BA) or varying rates of hippuric acid (8 and 82 mM, U + HA1, U + HA2). Soil inorganic nitrogen (N) and N2O fluxes were monitored over a 66 day period. Urine application resulted in elevated N2O flux for 44 days. The largest N2O fluxes accounting for between 13% (U) and 26% (U + HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N2O. Cumulative N2O loss from the control was 0.3 kg N2O–N ha− 1 compared with 11, 9, 12, and 10 kg N2O–N ha− 1 for the U, U + HA1, U + HA2, and U + BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N2O emissions. Although simulation of dietary manipulation to reduce N2O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.Department of Agriculture, Food and the Marin

    Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils

    Get PDF
    pre-printCattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N2O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10/RD/SC/716 and 11S138)

    Confirmation of co-denitrification in grazed grassland

    Get PDF
    peer-reviewedPasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.The authors are grateful for the funding that was provided through the Research Stimulus Fund Program administered by the Department of Agriculture & Food under the National Development Plan 2007–2013 RSF 07536. The first author is grateful for the funding provided by Teagasc through the Walsh Fellowship Scheme

    Dynamic ubiquitination drives herpesvirus neuroinvasion

    Get PDF
    Neuroinvasive herpesviruses display a remarkable propensity to enter the nervous system of healthy individuals in the absence of obvious trauma at the site of inoculation. We document a repurposing of cellular ubiquitin during infection to switch the virus between two invasive states. The states act sequentially to defeat consecutive host barriers of the peripheral nervous system and together promote the potent neuroinvasive phenotype. The first state directs virus access to nerve endings in peripheral tissue, whereas the second delivers virus particles within nerve fibers to the neural ganglia. Mutant viruses locked in either state remain competent to overcome the corresponding barrier but fail to invade the nervous system. The herpesvirus “ubiquitin switch” may explain the unusual ability of these viruses to routinely enter the nervous system and, as a consequence, their prevalence in human and veterinary hosts

    A field-based comparison of ammonia emissions from six Irish soil types following urea fertiliser application

    Get PDF
    peer-reviewedAmmonia (NH3) emissions from a range of soil types have been found to differ under laboratory conditions. However, there is lack of studies comparing NH3 emissions from different soil types under field conditions. The objective was to compare NH3 emissions from six different soil types under similar environmental conditions in the field following urea fertiliser application. The study was conducted on a lysimeter unit and NH3 emissions were measured, using wind tunnels, from six different soil types with varying soil characteristics following urea fertiliser application (80 kg N/ha). On average, 17.6% (% total N applied) was volatilised, and there was no significant difference in NH3 emissions across all soil types. Soil variables, including pH, cation exchange capacity and volumetric moisture, were not able to account for the variation in emissions. Further field studies are required to improve the urea-NH3 emission factor used for Ireland’s NH3 inventory

    An evaluation of urine patch simulation methods for nitrous oxide emission measurement

    Get PDF
    peer-reviewedGlobal nitrous oxide (N2O) inventory estimates for pasture systems are refined based on measurements of N2O loss from simulated urine patches. A variety of methods are used for patch simulation but they frequently use a uniform wetted area (UWA), often smaller than a bovine urine patch. However, natural patches follow non-uniform infiltration patterns expanding naturally from a point of deposit with a non-wetted zone of influence. Using 2 litres of urine the UWA method was compared, using a 0·156 m2 collar, with a naturally expanding effective area (NEEA) method, using a 0·462 m2 collar under high (HL) and low (LL) N2O loss conditions. The method chosen affects urine nitrogen (N) loading to the soil. Under HL the UWA method induced a N2O-N loss of 280·6 mg/patch, significantly less than the 434·8 mg/patch loss for the NEEA method, for the same simulated urination. Under LL there was no method effect. Efforts should be made to employ patch simulation methods, which mimic natural deposits and can be achieved, at least in part, by: (a) Using a urine volume and N content similar to that of the animal of interest. (b) Allowing natural infiltration of the chosen urine volume to permit tapering towards the edges. (c) Measuring from the zone of influence in addition to the wetted area, i.e. the patch effective area

    The interactive effects of various nitrogen fertiliser formulations applied to urine patches on nitrous oxide emissions in grassland

    Get PDF
    peer-reviewedPasture-based livestock agriculture is a major source of greenhouse gas (GHG) nitrous oxide (N2O). Although a body of research is available on the effect of urine patch N or fertiliser N on N2O emissions, limited data is available on the effect of fertiliser N applied to patches of urinary N, which can cover up to a fifth of the yearly grazed area. This study investigated whether the sum of N2O emissions from urine and a range of N fertilisers, calcium ammonium nitrate (CAN) or urea ± urease inhibitor ± nitrification inhibitor, applied alone (disaggregated and re-aggregated) approximated the N2O emission of urine and fertiliser N applied together (aggregated). Application of fertiliser to urine patches did not significantly increase either the cumulative yearly N2O emissions or the N2O emission factor in comparison to urine and fertiliser applied separately with the emissions re-aggregated. However, there was a consistent trend for approximately 20% underestimation of N2O loss generated from fertiliser and urine applied separately when compared to figures generated when urine and fertiliser were applied together. N2O emission factors from fertilisers were 0.02%, 0.06%, 0.17% and 0.25% from urea ± dicyandiamide (DCD), urea + N-(n-butyl) thiophosphoric triamide (NBPT) + DCD, urea + NBPT and urea, respectively, while the emission factor for urine alone was 0.33%. Calcium ammonium nitrate and urea did not interact differently with urine even when the urea included DCD. N2O losses could be reduced by switching from CAN to urea-based fertilisers

    Impaired Peripheral Vasodilation during Graded Systemic Hypoxia in Healthy Older Adults: Role of the Sympathoadrenal System

    Get PDF
    Systemic hypoxia is a physiological and pathophysiological stress that activates the sympathoadrenal system and, in young adults, leads to peripheral vasodilation. We tested the hypothesis that peripheral vasodilation to graded systemic hypoxia is impaired in older healthy adults and that this age-associated impairment is due to attenuated β-adrenergic mediated vasodilation and elevated α-adrenergic vasoconstriction. Forearm blood flow was measured (Doppler ultrasound) and vascular conductance (FVC) was calculated in 12 young (24±1 yrs) and 10 older (63±2 yrs) adults to determine the local dilatory responses to graded hypoxia (90, 85, and 80% O2 saturations) in control conditions, following local intra-arterial blockade of β-receptors (propranolol), and combined blockade of α+β receptors (phentolamine + propranolol). Under control conditions, older adults exhibited impaired vasodilation to hypoxia compared with young at all levels of hypoxia (peak ΔFVC at 80% SpO2 = 4±6 vs. 35±8%; P\u3c0.01). During β-blockade, older adults actively constricted at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2= -13±6%; P\u3c0.05 vs. control) whereas the response in the young was not significantly impacted (peak ΔFVC = 28±8%). Combined α+β blockade increased the dilatory response to hypoxia in young adults, however older adults failed to significantly vasodilate (peak ΔFVC at 80% SpO2= 12±11% vs. 58±11%; P\u3c0.05). Our findings indicate that peripheral vasodilation to graded systemic hypoxia is significantly impaired in older adults which cannot be fully explained by altered sympathoadrenal control of vascular tone. Thus, the impairment in hypoxic vasodilation is likely due to attenuated local vasodilatory and/or augmented vasoconstrictor signaling with age

    Reactive Hyperemia Occurs Via Activation of Inwardly Rectifying Potassium Channels and Na+/K+-ATPase in Humans

    Get PDF
    Rationale: Reactive hyperemia (RH) in the forearm circulation is an important marker of cardiovascular health, yet the underlying vasodilator signaling pathways are controversial and thus remain unclear. Objective: We hypothesized that RH occurs via activation of inwardly rectifying potassium (KIR) channels and Na+/K+-ATPase and is largely independent of the combined production of the endothelial autocoids nitric oxide (NO) and prostaglandins in young healthy humans. Methods and Results: In 24 (23±1 years) subjects, we performed RH trials by measuring forearm blood flow (FBF; venous occlusion plethysmography) after 5 minutes of arterial occlusion. In protocol 1, we studied 2 groups of 8 subjects and assessed RH in the following conditions. For group 1, we studied control (saline), KIR channel inhibition (BaCl2), combined inhibition of KIR channels and Na+/K+-ATPase (BaCl2 and ouabain, respectively), and combined inhibition of KIR channels, Na+/K+-ATPase, NO, and prostaglandins (BaCl2, ouabain, L-NMMA [NG-monomethyl-L-arginine] and ketorolac, respectively). Group 2 received ouabain rather than BaCl2 in the second trial. In protocol 2 (n=8), the following 3 RH trials were performed: control; L-NMMA plus ketorolac; and L-NMMA plus ketorolac plus BaCl2 plus ouabain. All infusions were intra-arterial (brachial). Compared with control, BaCl2 significantly reduced peak FBF (−50±6%; P2 (−61±3%) and ouabain (−44±12%) alone, and this effect was enhanced when combined (−87±4%), nearly abolishing RH. L-NMMA plus ketorolac did not impact total RH FBF before or after administration of BaCl2 plus ouabain. Conclusions: Activation of KIR channels is the primary determinant of peak RH, whereas activation of both KIR channels and Na+/K+-ATPase explains nearly all of the total (AUC) RH in humans

    Temperate Grassland Yields and Nitrogen Uptake Are Influenced by Fertilizer Nitrogen Source

    Get PDF
    This research was supported under the National Development Plan through the Research Stimulus Fund administered by the Department of Agriculture, Food and the Marine (Grants RSF10-/RD/SC/716 and RSF11S138) and from the Department of Agriculture and Rural Development for Northern Ireland and by the Teagasc Walsh Fellowship Scheme.peer reviewedIn temperate grasslands, N source influences greenhouse gas emissions. Nitrification and urea hydrolysis inhibitors can reduce these losses. The objective of this study was to evaluate the impact of N source, urease inhibitors, and nitrification inhibitors on temperate grassland yields and N uptake. Experiments were conducted at three locations over 2 years (6 site-years) on the island of Ireland, covering a range of soils and climatic conditions. Results showed that calcium ammonium nitrate (CAN), urea+N-(n-butyl) thiophosphoric triamide (NBPT), urea+NBPT+dicyandiamide (DCD), and urea had equal annual dry matter yield. Urea+DCD had lower dry matter yield than CAN for 3 site-years. Calcium ammonium nitrate and urea+NBPT consistently had the same N uptake, urea+DCD had lower N uptake than CAN in 4 of 6 site-years, urea had lower N uptake than CAN in 2 site-years, and urea+NBPT+DCD had lower N uptake than CAN in 1 site-year. Urea+NBPT is a cost-effective alternative to CAN, which is consistently equal in terms of yield and N uptake in temperate grassland.Teagasc Walsh Fellowship ProgrammeDepartment of Agriculture and Rural Development for Northern IrelandDepartment of Agriculture, Food and the Marin
    corecore