9,010 research outputs found

    Detection and Quantification of 3,5,3β€²-Triiodothyronine and 3,3β€²,5β€²-Triiodothyronine by Electrospray Ionization Tandem Mass Spectrometry

    Get PDF
    A novel and rapid method for identifying and quantifying 3,5,3β€²-triiodothyronine (T3) and 3,3β€²,5β€²-triiodothyronine (rT3; reverse T3) has been introduced using electrospray ionization tandem mass spectrometry (ESI-MS/MS). MS2 spectra in either negative ionization mode or positive ionization mode can be used to differentiate T3 and rT3. Quantification of the T3 and rT3 isomers under the negative ionization mode is also achieved without prior separation by HPLC

    A predominantly nuclear protein affecting cytoplasmic localization of Ξ²-actin mRNA in fibroblasts and neurons

    Get PDF
    The localization of Ξ²-actin mRNA to the leading lamellae of chicken fibroblasts and neurite growth cones of developing neurons requires a 54-nt localization signal (the zipcode) within the 3β€² untranslated region. In this study we have identified and isolated five proteins binding to the zipcode. One of these we previously identified as zipcode binding protein (ZBP)1, a 4-KH domain protein. A second is now investigated in detail: a 92-kD protein, ZBP2, that is especially abundant in extracts from embryonic brain. We show that ZBP2 is a homologue of the human hnRNP protein, KSRP, that appears to mediate pre-mRNA splicing. However, ZBP2 has a 47–amino acid (aa) sequence not present in KSRP. Various portions of ZBP2 fused to GFP indicate that the protein most likely shuttles between the nucleus and the cytoplasm, and that the 47-aa insert promotes the nuclear localization. Expression of a truncated ZBP2 inhibits the localization of Ξ²-actin mRNA in both fibroblast and neurons. These data suggest that ZBP2, although predominantly a nuclear protein, has a role in the cytoplasmic localization of Ξ²-actin mRNA

    A Statistical Study on Force-Freeness of Solar Magnetic Fields in the Photosphere

    Full text link
    It is an indisputable fact that solar magnetic fields are force-free in the corona, where force free fields means that current and magnetic fields are parallel and there is no Lorentz force in the fields. While the force-free extent of photospheric magnetic fields remains open. In this paper, the statistical results about it is given. The vector magnetograms (namely, BxB_{x}, ByB_{y} and BzB_{z} in heliocentric coordinates) are employed, which are deduced and calibrated from Stokes spectra, observed by Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station (HSOS) are used. We study and calibrated 925 magnetograms calibrated by two sets of calibration coefficients, that indicate the relations between magnetic fields and the strength of Stokes spectrum and can be calculated either theoretically or empirically. The statistical results show that the majority of active region magnetic fields are not consistent with the force-free model.Comment: 10 pages, 5 figures, has been accepted by PAS

    Genome-wide analysis reveals a cell cycle–dependent mechanism controlling centromere propagation

    Get PDF
    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division

    Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging

    Get PDF
    BACKGROUND: Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3(β€²)-deoxy-3(β€²)-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. METHODS: NIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy. RESULTS: NIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism. CONCLUSIONS: NIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics
    • …
    corecore