7 research outputs found

    Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor

    Get PDF
    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues

    Proinsulin C-Peptide Antagonizes the Profibrotic Effects of TGF-β1 via Up-Regulation of Retinoic Acid and HGF-Related Signaling Pathways

    Full text link
    Novel signaling roles for C-peptide have recently been discovered with evidence that it can ameliorate complications of type 1 diabetes. Here we sought to identify new pathways regulated by C-peptide of relevance to the pathophysiology of diabetic nephropathy. Microarray analysis was performed to identify genes regulated by either C-peptide and/or TGF-β1 in a human proximal tubular cell line, HK-2. Expression of retinoic acid receptor β (RARβ), hepatocyte growth factor (HGF), cellular retinoic acid-binding protein II (CRABPII), vimentin, E-cadherin, Snail, and β-catenin was assessed by immunoblotting. The cellular localization of vimentin and β-catenin was determined by immunocytochemistry. Changes in cell morphology were assessed by phase contrast microscopy. Gene expression profiling demonstrated differential expression of 953 and 1458 genes after C-peptide exposure for 18 h or 48 h, respectively. From these, members of the antifibrotic retinoic acid (RA)- and HGF-signaling pathways were selected. Immunoblotting demonstrated that C-peptide increased RARβ, CRABPII, and HGF. We confirmed a role for RA in reversal of TGF-β1-induced changes associated with epithelial-mesenchymal transition, including expression changes in Snail, E-cadherin, vimetin, and redistribution of β-catenin. Importantly, these TGF-β1-induced changes were inhibited by C-peptide. Further, effects of TGF-β1 on Snail and E-cadherin expression were blocked by HGF, and inhibitory effects of C-peptide were removed by blockade of HGF activity. This study identifies a novel role for HGF as an effector of C-peptide, possibly via an RA-signaling pathway, highlighting C-peptide as a potential therapy for diabetic nephropathy

    Lack of receptor selective effects of either RGS2, RGS3 or RGS4 on muscarinic M3- and gonadotropin-releasing hormone-receptor-mediated signalling through Gαq/11

    Full text link
    Termination of signalling by G-protein-coupled receptors requires inactivation of the Gα-subunits of heterotrimeric G-proteins and the re-association of Gα- and Gβγ-subunits. Inactivation of Gα-subunits is achieved by the hydrolysis of bound GTP by an intrinsic GTPase activity, which is considerably enhanced by GTPase activating proteins. Regulators of G-protein signalling (RGS) proteins are a large family of GTPase activating proteins, many of which have structures indicating roles beyond GTPase activating protein activity and suggesting that the identity of the RGS protein recruited may also be critical to other aspects of signalling. There is some evidence of selective effects of RGS proteins against different G-protein-coupled receptors coupling to the same signalling pathways and growing evidence of physical interactions between RGS proteins and G-protein-coupled receptors. However, it is unclear as to how common such interactions are and the circumstances under which they are functionally relevant. Here we have examined potential selectivity of RGS2, 3 and 4 against signalling mediated by Gαq/11-coupled muscarinic M3 receptors and gonadotropin-releasing hormone in an immortalised mouse pituitary cell line. Despite major structural differences between these two receptor types and agonist-dependent phosphorylation of the muscarinic M3- but not gonadotropin-releasing hormone-receptor, signalling by both receptors was similarly inhibited by expression of either RGS2 or RGS3, whereas RGS4 has little effect. Thus, at least in these circumstances, RGS protein-dependent inhibition of signalling is not influenced by the nature of the G-protein-coupled receptor through which the signalling is mediated

    Insulin-like growth factor-I inhibits rat arterial K-ATP channels through PI 3-kinase.

    Full text link
    Since, in addition to its growth-promoting actions, insulin-like growth factor-I (IGF-I) has rapid vasoactive actions, we investigated the effects of IGF-I on whole-cell ATP-sensitive K+ (K-ATP) currents of rat mesenteric arterial smooth muscle cells. IGF-I (10 or 30 nM) reduced K-ATP currents activated by pinacidil or a membrane permeant cAMP analogue. Inhibition of phospholipase C, protein kinase C, protein kinase A, mitogen-activated protein kinase or mammalian target of rapamycin (mTOR) did not prevent the action of IGF-I. However, inhibition of K-ATP currents by IGF-I was abolished by the tyrosine kinase inhibitor genistein or the phosphoinositide 3-kinase inhibitors, LY 294002 and wortmannin. Intracellular application of either phosphatidylinositol 4,5-bisphosphate (PIP-2) or phosphatidylinositol 3,4,5-trisphosphate (PIP-3) increased the K-ATP current activated by pinacidil and abolished the inhibitory effect of IGF-I. Thus, we show regulation of arterial K-ATP channels by polyphosphoinositides and report for the first time that IGF-I inhibits these channels via a phosphoinositide 3-kinase-dependent pathway

    Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor

    Full text link
    The structurally related, but distinct neuropeptides, neuromedin U (NmU) and neuromedin S (NmS) are ligands of two G protein-coupled NmU receptors (NMU1, NMU2). Hypothalamic NMU2 regulates feeding behavior and energy expenditure and has therapeutic potential as an anti-obesity target, making an understanding of its signaling and regulation of particular interest. NMU2 binds both NmU and NmS with high affinity, resulting in receptor-ligand co-internalization. We have investigated whether receptor trafficking events post-internalization are 'biased' by the ligand bound and can therefore influence signaling function. Using recombinant cell-lines expressing human NMU2, we demonstrate that acute Ca2+ signaling responses to NmU or NmS are indistinguishable and that restoration of responsiveness (resensitization) requires receptor internalization and endosomal acidification. The rate of NMU2 resensitization is faster following NmU compared to NmS exposure, but is similar if endothelin-converting enzyme-1 activity is inhibited or knocked-down. Although acute activation of extracellular signal-regulated kinase (ERK) is also similar, activation by NMU2 is longer-lasting if NmS is the ligand. Furthermore, when cells were briefly challenged before removal of free, but not receptor-bound ligand, activation of ERK and p38 mitogen-activated protein kinase by NmS is more sustained, but only NmU responses are potentiated and extended by ECE-1 inhibition. These data indicate that differential intracellular ligand processing produces different signaling and receptor resensitization profiles and add to the findings of other studies demonstrating that intracellular ligand processing can shape receptor behavior and signal transduction

    Hazards of using masking protocols when performing ligand binding assays: lessons from the sigma-1 and sigma-2 receptors.

    No full text
    Sigma-1 and sigma-2 receptors are emerging therapeutic targets. Although the molecular identity of the sigma-2 receptor has recently been determined, receptor quantitation has used, and continues to use, the sigma-1 selective agents (+) pentazocine or dextrallorphan to mask the sigma-1 receptor in radioligand binding assays. Here, we have assessed the suitability of currently established saturation and competition binding isotherm assays that are used to quantify parameters of the sigma-2 receptor. We show that whilst the sigma-1 receptor mask (+) pentazocine has low affinity for the sigma-2 receptor (Ki 406 nM), it can effectively compete at this site with [³H] di-O-tolyl guanidine (DTG) at the concentrations frequently used to mask the sigma-1 receptor (100 nM and 1 µM). This competition influences the apparent affinity of DTG and other ligands tested in this system. A more troublesome issue is that DTG can displace (+) pentazocine from the sigma-1 receptor, rendering it partly unmasked. Indeed, commonly used concentrations of (+) pentazocine, 100 nM and 1 µM, allowed 37 and 11% respectively of sigma-1 receptors to be bound by DTG (300 nM), which could result in an overestimation of sigma-2 receptor numbers in assays where sigma-1 receptors are also present. Similarly, modelled data for 1 µM dextrallorphan show that only 71-86% of sigma-1 receptors would be masked in the presence of 300 nM DTG. Therefore, the use of dextrallorphan as a masking agent would also lead to the overestimation of sigma-2 receptors in systems where sigma-1 receptors are present. These data highlight the dangers of using masking agents in radioligand binding studies and we strongly recommend that currently used masking protocols are not used in the study of sigma-2 receptors. In order to overcome these problems, we recommend the use of a cell line apparently devoid of sigma-1 receptors [e.g., MCF7 (ATCC HTB-22)] in the absence of any masking agent when determining the affinity of agents for the sigma-2 receptor. In addition, assessing the relative levels of sigma-1 and sigma-2 receptors can be achieved using [³H] DTG saturation binding followed by two-site analysis of (+) pentazocine competition binding with [³H] DTG

    Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis.

    Get PDF
    Recently we described a new, evolutionarily conserved cellular stress response characterized by a reversible reorganization of endoplasmic reticulum (ER) membranes that is distinct from canonical ER stress and the unfolded protein response (UPR). Apogossypol, a putative broad spectrum BCL-2 family antagonist, was the prototype compound used to induce this ER membrane reorganization. Following microarray analysis of cells treated with apogossypol, we used connectivity mapping to identify a wide range of structurally diverse chemicals from different pharmacological classes and established their ability to induce ER membrane reorganization. Such structural diversity suggests that the mechanisms initiating ER membrane reorganization are also diverse and a major objective of the present study was to identify potentially common features of these mechanisms. In order to explore this, we used hierarchical clustering of transcription profiles for a number of chemicals that induce membrane reorganization and discovered two distinct clusters. One cluster contained chemicals with known effects on Ca(2+) homeostasis. Support for this was provided by the findings that ER membrane reorganization was induced by agents that either deplete ER Ca(2+) (thapsigargin) or cause an alteration in cellular Ca(2+) handling (calmodulin antagonists). Furthermore, overexpression of the ER luminal Ca(2+) sensor, STIM1, also evoked ER membrane reorganization. Although perturbation of Ca(2+) homeostasis was clearly one mechanism by which some agents induced ER membrane reorganization, influx of extracellular Na(+) but not Ca(2+) was required for ER membrane reorganization induced by apogossypol and the related BCL-2 family antagonist, TW37, in both human and yeast cells. Not only is this novel, non-canonical ER stress response evolutionary conserved but so also are aspects of the mechanism of formation of ER membrane aggregates. Thus perturbation of ionic homeostasis is important in the regulation of ER membrane reorganization
    corecore