14 research outputs found

    Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters

    Get PDF
    Studies in several species of rodents show that arginine vasopressin (AVP) acting through a V1A receptor facilitates offensive aggression, i.e., the initiation of attacks and bites, whereas serotonin (5-HT) acting through a 5-HT1B receptor inhibits aggressive responding. One area of the CNS that seems critical for the organization of aggressive behavior is the basolateral hypothalamus, particularly the anterior hypothalamic region. The present studies examine the neuroanatomical and neurochemical interaction between AVP and 5-HT at the level of the anterior hypothalamus (AH) in the control of offensive aggression in Syrian golden hamsters. First, specific V1A and 5-HT1B binding sites in the AH are shown by in vitro receptor autoradiography. The binding for each neurotransmitter colocalizes with a dense field of immunoreactive AVP and 5-HT fibers and putative terminals. Putative 5-HT synapses on AVP neurons in the area of the AH are identified by double-staining immunocytochemistry and laser scanning confocal microscopy. These morphological data predispose a functional interaction between AVP and 5-HT at the level of the AH. When tested for offensive aggression in a resident/intruder paradigm, resident hamsters treated with fluoxetine, a selective 5-HT reuptake inhibitor, have significantly longer latencies to bite and bite fewer times than vehicle-treated controls. Conversely, AVP microinjections into the AH significantly shorten the latency to bite and increase biting attacks. The action of microinjected AVP to increase offensive aggression is blocked by the pretreatment of hamsters with fluoxetine. These data suggest that 5-HT inhibits fighting, in part, by antagonizing the aggression-promoting action of the AVP system

    Celestial Mechanics, Conformal Structures, and Gravitational Waves

    Full text link
    The equations of motion for NN non-relativistic particles attracting according to Newton's law are shown to correspond to the equations for null geodesics in a (3N+2)(3N+2)-dimensional Lorentzian, Ricci-flat, spacetime with a covariantly constant null vector. Such a spacetime admits a Bargmann structure and corresponds physically to a generalized pp-wave. Bargmann electromagnetism in five dimensions comprises the two Galilean electro-magnetic theories (Le Bellac and L\'evy-Leblond). At the quantum level, the NN-body Schr\"odinger equation retains the form of a massless wave equation. We exploit the conformal symmetries of such spacetimes to discuss some properties of the Newtonian NN-body problem: homographic solutions, the virial theorem, Kepler's third law, the Lagrange-Laplace-Runge-Lenz vector arising from three conformal Killing 2-tensors, and motions under inverse square law forces with a gravitational constant G(t)G(t) varying inversely as time (Dirac). The latter problem is reduced to one with time independent forces for a rescaled position vector and a new time variable; this transformation (Vinti and Lynden-Bell) arises from a conformal transformation preserving the Ricci-flatness (Brinkmann). A Ricci-flat metric representing NN non-relativistic gravitational dyons is also pointed out. Our results for general time-dependent G(t)G(t) are applicable to the motion of point particles in an expanding universe. Finally we extend these results to the quantum regime.Comment: 26 pages, LaTe

    The Effect of Structural Complexity, Prey Density, and “Predator-Free Space” on Prey Survivorship at Created Oyster Reef Mesocosms

    Get PDF
    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats

    Clavulanic acid: a competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects

    No full text
    Clavulanic acid is a member of the beta lactam family of antibiotics with little or no intrinsic antibacterial activity of its own; instead, it is used to enhance the activity of antibiotics by blocking bacterial beta-lactamases. Because clavulanic acid by itself is very safe, orally active and shows good brain penetrance, we sought to determine if it had any potential as a psychotherapeutic. Clavulanic acid was a tested across three mammalian species, hamsters, rats and cotton-top tamarin monkeys in a series of behavioral assays designed to screen for anxiolytic activity. In addition, several studies were done in rodents to compare the behavioral profile of clavulanic acid to the commonly prescribed benzodiazepines, particularly with respect to their unwanted side effects of motor depression, amnesia and neuroendocrine dysregulation. Our findings show that clavulanic acid is a highly potent anxiolytic in rodents without altering motor activity in the open field test, normal learning and memory in the Morris water maze, or normal stress hormone release. Orally administered clavulanic acid significantly reduces measures of anxiety in male/female pairs of cotton-top tamarins. In addition, male tamarins showed a highly significant increase in sexual arousal as measured by the number of penile erections. The fact clavulanic acid has anxiolytic activity in the tamarin holds the promise that this drug may be an effective therapeutic for the treatment of anxiety disorders in humans
    corecore