3,213 research outputs found

    New perspectives on the Popigai impact structure

    Get PDF
    The record of large-scale cratering on Earth is scant, and the only currently 'proven' 100-km-class impact structure known to have formed within the Cenozoic is Popigai, located in the Siberian Arctic at 71.5 deg N, 111 deg E. Popigai is clearly a multiringed impact basin formed within the crystalline shield rocks (Anabar) and platform sediments of the Siberian taiga, and estimates of the volume of preserved impact melt typically exceed 1700 cu km, which is within a factor of 2-3 of what would be predicted using scaling relationships. We present the preliminary results of an analysis of the present-day topography of the Popigai structure, together with refined absolute age estimates, in order to reconstruct the pre-erosional morphology of the basin, as well as to quantify the erosion or sediment infill rates in the Popigai region

    A Mars orbital laser altimeter for rover trafficability: Instrument concept and science potential

    Get PDF
    Limited information on the types of geologic hazards (boulders, troughs, craters etc.) that will affect rover trafficability on Mars are available for the two Viking Lander sites, and there are no prospects for increasing this knowledge base in the near future. None of the instrument payloads on the upcoming Mars Observer or Soviet PHOBOS missions can directly measure surface obstacles on the scales of concern for rover safety (a few meters). Candidate instruments for the Soviet Mars 92 orbiter/balloon/rover mission such as balloon-borne stereo imaging, rover panoramic imaging, and orbital synthetic aperature imaging (SAR) are under discussion, but data from this mission may not be available for target areas of interest for the U.S. Mars Rover Sample Return (MRSR) mission. In an effort to determine how to directly measure the topography of surface obstacles that could affect rover trafficability on Mars, we are studying how to design a laser altimeter with extremely high spatial and vertical resolution that would be suitable for a future Mars Orbiter spacecraft (MRSR precursor or MRSR orbiter). This report discusses some of the design issues associated with such an instrument, gives examples of laser altimeter data collected for Mars analog terrains on Earth, and outlines the scientific potential of data that could be obtained with the system

    Search for the 700,000-year-old source crater of the Australasian tektite strewn field

    Get PDF
    Many tektite investigations have hypothesized that the impact crater that was the source of the extensive Australasian strewn field lies somewhere in or near Indochina. This is due to variations in abundance and size of tektites across the strewn field, variation of thickness of microtektite layers in ocean cores, nature and ablation characteristics across the field, and, above all, the occurrence of the large, blocky, layered Muong Nong-type tektites in Indochina. A recent study of the location and chemistry of Muong Nong-type and splash-form tektites suggests that the source region can be further narrowed to a limited area in eastern Thailand and southern Loas. Satellite multispectral imagery, a digital elevation dataset, and maps showing drainage patterns were used to search within this area for possible anomalous features that may be large degraded impact craters. Four interesting structures were identified from these datasets, and they are presented

    The Zhamanshin impact feature: A new class of complex crater?

    Get PDF
    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert

    Multibeam Laser Altimeter for Planetary Topographic Mapping

    Get PDF
    Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented

    Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    Get PDF
    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation

    K/T age for the popigai impact event

    Get PDF
    The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma

    Geological remote sensing signatures of terrestrial impact craters

    Get PDF
    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events

    Scalable production of cellular aggregates for the differentiation of embryonic stem cells into cardiac muscle

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 36-37).Embryonic stem (ES) cells have the potential to treat many diseases, such as heart disease, diabetes, and Parkinson's disease. However, large numbers of desired differentiated or progenitor cells must be generated from ES cells for many regenerative medicine applications to be successful. Current methods of culture used in the laboratory either cannot be scaled-up to produce sufficiently large numbers of cells or do not consistently produce aggregates of uniform size. In this study, novel methods for aggregating and encapsulating embryonic stem cells were investigated. Latex microspheres and the [beta]TC3 cell line were used in place of ES cells during the development of the methods. Microspheres and cells were encapsulated in an alginate solution coated with poly-L-lysine using an established drip method and a novel fluorinated oil "floating drop" method. Results from these experiments demonstrate that both methods can be used for encapsulating and growing cells. However aggregation, an important aspect for the directed differentiation of ES cells, only occurred using the "floating drop" method, and this method was used to encapsulate a predetermined number of cells in capsules of a specified size. The "floating drop" method has the advantage that culture media can be changed during cell culture to increase the duration of experiments without transferring the aggregates to culture flasks and can potentially be scaled up to produce large numbers of encapsulations.by Joshua Garvin.S.B

    Oxidized basalts on the surface of Venus: Compositional implications of measured spectral properties

    Get PDF
    Venera Lander reflectance data are compared with high temperature spectra of the same basaltic materials. The dark, flat unoxidized basalts are still inconsistent with the Venera data in the near-infrared. Basaltic material with a ferric component, however, would satisfy both the increase in reflectance beyond 0.7 microns as well as the dark, relatively colorless character in the visible. Therefore, it is concluded that besaltic surfaces of Venus represented by these measurements either contain minerals with uncommon characteristics, or, more likely, are relatively oxidized
    corecore