20 research outputs found

    An economic model of long-term use of celecoxib in patients with osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous evaluations of the cost-effectiveness of the cyclooxygenase-2 selective inhibitor celecoxib (Celebrex, Pfizer Inc, USA) have produced conflicting results. The recent controversy over the cardiovascular (CV) risks of rofecoxib and other coxibs has renewed interest in the economic profile of celecoxib, the only coxib now available in the United States. The objective of our study was to evaluate the long-term cost-effectiveness of celecoxib compared with nonselective nonsteroidal anti-inflammatory drugs (nsNSAIDs) in a population of 60-year-old osteoarthritis (OA) patients with average risks of upper gastrointestinal (UGI) complications who require chronic daily NSAID therapy.</p> <p>Methods</p> <p>We used decision analysis based on data from the literature to evaluate cost-effectiveness from a modified societal perspective over patients' lifetimes, with outcomes expressed as incremental costs per quality-adjusted life-year (QALY) gained. Sensitivity tests were performed to evaluate the impacts of advancing age, CV thromboembolic event risk, different analytic horizons and alternate treatment strategies after UGI adverse events.</p> <p>Results</p> <p>Our main findings were: 1) the base model incremental cost-effectiveness ratio (ICER) for celecoxib versus nsNSAIDs was 31,097perQALY;2)theICERperQALYwas31,097 per QALY; 2) the ICER per QALY was 19,309 for a model in which UGI ulcer and ulcer complication event risks increased with advancing age; 3) the ICER per QALY was $17,120 in sensitivity analyses combining serious CV thromboembolic event (myocardial infarction, stroke, CV death) risks with base model assumptions.</p> <p>Conclusion</p> <p>Our model suggests that chronic celecoxib is cost-effective versus nsNSAIDs in a population of 60-year-old OA patients with average risks of UGI events.</p

    9‐1: Invited Paper:

    No full text

    15.3 An a-IGZO asynchronous delta-sigma modulator on foil achieving up to 43dB SNR and 40dB SNDR in 300Hz bandwidth

    No full text
    Amorphous IGZO (a-IGZO) TFTs fabricated on flexible large-area substrates provide better mobility than a-Si or organic counterparts and good uniformity. These features make a-IGZO TFTs an attractive technology for large-area sensing (e.g. strain, pressure, IR), low-cost RFIDs augmented with sensors and monitoring of biopotentials. In this context, it is crucial to accurately transform analogue sensor signals in a robust representation. The most common choice is a synchronous digital word, but a two-level PWM representation is another interesting possibility. Binary PWM can be transmitted on wire or via RF amplitude modulation with high immunity to noise and interferers

    Physical-based analytical model of flexible a-IGZO TFTs accounting for both charge injection and transport

    No full text
    Here we show a new physical-based analytical model of a-IGZO TFTs. TFTs scaling from L=200 μm to L=15 μm and fabricated on plastic foil are accurately reproduced with a unique set of parameters. The model is used to design a zero- VGS inverter. It is a valuable tool for circuit design and technology characterization

    Physical-based analytical model of flexible a-IGZO TFTs accounting for both charge injection and transport

    No full text
    Here we show a new physical-based analytical model of a-IGZO TFTs. TFTs scaling from L=200 μm to L=15 μm and fabricated on plastic foil are accurately reproduced with a unique set of parameters. The model is used to design a zero-VGS inverter. It is a valuable tool for circuit design and technology characterization. cop. 2015 IEEE

    Physical-based Analytical Model of Flexible a-IGZO TFTs Accounting for Both Charge Injection and Transport

    Get PDF
    Here we show a new physical-based analytical model of a-IGZO TFTs. TFTs scaling from L=200 μm to L=15 μm and fabricated on plastic foil are accurately reproduced with a unique set of parameters. The model is used to design a zero-VGS inverter. It is a valuable tool for circuit design and technology characterization
    corecore