1,357 research outputs found
Second Order Perturbations of a Macroscopic String; Covariant Approach
Using a world-sheet covariant formalism, we derive the equations of motion
for second order perturbations of a generic macroscopic string, thus
generalizing previous results for first order perturbations. We give the
explicit results for the first and second order perturbations of a contracting
near-circular string; these results are relevant for the understanding of the
possible outcome when a cosmic string contracts under its own tension, as
discussed in a series of papers by Vilenkin and Garriga. In particular, second
order perturbations are necessaary for a consistent computation of the energy.
We also quantize the perturbations and derive the mass-formula up to second
order in perturbations for an observer using world-sheet time . The high
frequency modes give the standard Minkowski result while, interestingly enough,
the Hamiltonian turns out to be non-diagonal in oscillators for low-frequency
modes. Using an alternative definition of the vacuum, it is possible to
diagonalize the Hamiltonian, and the standard string mass-spectrum appears for
all frequencies. We finally discuss how our results are also relevant for the
problems concerning string-spreading near a black hole horizon, as originally
discussed by Susskind.Comment: New discussion about the quantum mass-spectrum in chapter
Zero-th law in structural glasses: an example
We investigate the validity of a zeroth thermodynamic law for non-equilibrium
systems. In order to describe the thermodynamics of the glassy systems, it has
been introduced an extra parameter, the effective temperature which generalizes
the fluctuation-dissipation theorem (FDT) to off-equilibrium systems and
supposedly describes thermal fluctuations around the aging state. In particular
we analyze two coupled systems of harmonic oscillators with Monte Carlo
dynamics. We study in detail two types of dynamics: sequential dynamics, where
the coupling between the subsystems comes only from the Hamiltonian; and
parallel dynamics where there is another source of coupling: the dynamics. We
show how in the first case the effective temperatures of the two interacting
subsystems are different asymptotically due to the smallness of the thermal
conductivity in the aging regime. This explains why, in structural glasses,
different interacting degrees of freedom can stay at different effective
temperatures, and never thermalize.Comment: 10 pages. Contribution to the Proceedings of the ESF SPHINX meeting
`Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25,
2001). To appear in a special issue of J. Phys. Cond. Mat
Stable and Unstable Circular Strings in Inflationary Universes
It was shown by Garriga and Vilenkin that the circular shape of nucleated
cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense
that the ratio of the mean fluctuation amplitude to the loop radius is
constant. This result can be generalized to all expanding strings (of non-zero
loop-energy) in de Sitter space. In other curved spacetimes the situation,
however, may be different.
In this paper we develop a general formalism treating fluctuations around
circular strings embedded in arbitrary spatially flat FRW spacetimes. As
examples we consider Minkowski space, de Sitter space and power law expanding
universes. In the special case of power law inflation we find that in certain
cases the fluctuations grow much slower that the radius of the underlying
unperturbed circular string. The inflation of the universe thus tends to wash
out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-
Solutions to the cosmological constant problems
We critically review several recent approaches to solving the two
cosmological constant problems. The "old" problem is the discrepancy between
the observed value of and the large values suggested by particle
physics models. The second problem is the "time coincidence" between the epoch
of galaxy formation and the epoch of -domination t_\L. It is
conceivable that the "old" problem can be resolved by fundamental physics
alone, but we argue that in order to explain the "time coincidence" we must
account for anthropic selection effects. Our main focus here is on the
discrete- models in which can change through nucleation of
branes. We consider the cosmology of this type of models in the context of
inflation and discuss the observational constraints on the model parameters.
The issue of multiple brane nucleation raised by Feng {\it et. al.} is
discussed in some detail. We also review continuous-\L models in which the
role of the cosmological constant is played by a slowly varying potential of a
scalar field. We find that both continuous and discrete models can in principle
solve both cosmological constant problems, although the required values of the
parameters do not appear very natural. M-theory-motivated brane models, in
which the brane tension is determined by the brane coupling to the four-form
field, do not seem to be viable, except perhaps in a very tight corner of the
parameter space. Finally, we point out that the time coincidence can also be
explained in models where is fixed, but the primordial density
contrast is treated as a random variable.Comment: 30 pages, 3 figures, two notes adde
Holographic multiverse and the measure problem
We discuss the duality, conjectured in earlier work, between the wave
function of the multiverse and a 3D Euclidean theory on the future boundary of
spacetime. In particular, we discuss the choice of the boundary metric and the
relation between the UV cutoff scale xi on the boundary and the hypersurfaces
Sigma on which the wave function is defined in the bulk. We propose that in the
limit of xi going to 0 these hypersurfaces should be used as cutoff surfaces in
the multiverse measure. Furthermore, we argue that in the inflating regions of
spacetime with a slowly varying Hubble rate H the hypersurfaces Sigma are
surfaces of constant comoving apparent horizon (CAH). Finally, we introduce a
measure prescription (called CAH+) which appears to have no pathological
features and coincides with the constant CAH cutoff in regions of slowly
varying H.Comment: A minor change: the discussion of unitarity on p.9 is clarifie
Covariant perturbations of domain walls in curved spacetime
A manifestly covariant equation is derived to describe the perturbations in a
domain wall on a given background spacetime. This generalizes recent work on
domain walls in Minkowski space and introduces a framework for examining the
stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
Is there the radion in the RS2 model ?
We analyse the physical boundary conditions at infinity for metric
fluctuations and gauge functions in the RS2 model with matter on the brane. We
argue that due to these boundary conditions the radion field cannot be gauged
out in this case. Thus, it represents a physical degree of freedom of the
model.Comment: 9 page
Braneworld Cosmological Perturbation Theory at Low Energy
Homogeneous cosmology in the braneworld can be studied without solving bulk
equations of motion explicitly. The reason is simply because the symmetry of
the spacetime restricts possible corrections in the 4-dimensional effective
equations of motion. It would be great if we could analyze cosmological
perturbations without solving the bulk. For this purpose, we combine the
geometrical approach and the low energy gradient expansion method to derive the
4-dimensional effective action. Given our effective action, the standard
procedure to obtain the cosmological perturbation theory can be utilized and
the temperature anisotropy of the cosmic background radiation can be computed
without solving the bulk equations of motion explicitly.Comment: 10 pages, Based on a talk presented at ACRGR4, the 4th Australasian
Conference on General Relativity and Gravitation, Monash University,
Melbourne, January 2004. To appear in the proceedings, in General Relativity
and Gravitatio
Circular String-Instabilities in Curved Spacetime
We investigate the connection between curved spacetime and the emergence of
string-instabilities, following the approach developed by Loust\'{o} and
S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised
equations determining the comoving physical (transverse) perturbations on
circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de
Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow
infinitely for (ring-collapse), while the "angular"
perturbations are bounded in this limit. For we find that
the perturbations in both physical directions (perpendicular to the string
world-sheet in 4 dimensions) blow up in the case of de Sitter space. This
confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered
perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris,
Meudon No. 9305
Geometry of Deformations of Relativistic Membranes
A kinematical description of infinitesimal deformations of the worldsheet
spanned in spacetime by a relativistic membrane is presented. This provides a
framework for obtaining both the classical equations of motion and the
equations describing infinitesimal deformations about solutions of these
equations when the action describing the dynamics of this membrane is
constructed using {\it any} local geometrical worldsheet scalars. As examples,
we consider a Nambu membrane, and an action quadratic in the extrinsic
curvature of the worldsheet.Comment: 20 pages, Plain Tex, sign errors corrected, many new references
added. To appear in Physical Review
- …