1,997 research outputs found

    Few-body decay and recombination in nuclear astrophysics

    Get PDF
    Three-body continuum problems are investigated for light nuclei of astrophysical relevance. We focus on three-body decays of resonances or recombination via resonances or the continuum background. The concepts of widths, decay mechanisms and dynamic evolution are discussed. We also discuss results for the triple α\alpha decay in connection with 2+2^+ resonances and density and temperature dependence rates of recombination into light nuclei from α\alpha-particles and neutrons.Comment: 9 pages, 8 figures. Proceedings of the 21st European Few Body Conference held in Salamanca (Spain) in August-September 201

    alpha particle momentum distributions from 12C decaying resonances

    Full text link
    The computed α\alpha particle momentum distributions from the decay of low-lying 12^{12}C resonances are shown. The wave function of the decaying fragments is computed by means of the complex scaled hyperspherical adiabatic expansion method. The large-distance part of the wave functions is crucial and has to be accurately calculated. We discuss energy distributions, angular distributions and Dalitz plots for the 4+4^+, 1+1^+ and 44^- states of 12^{12}C.Comment: 6 pages, 4 figures. Proceedings of the SOTANCP2008 conference held in Strasbourg in May 200

    Structure and three-body decay of 9^9Be resonances

    Get PDF
    The complex-rotated hyperspherical adiabatic method is used to study the decay of low-lying 9^9Be resonances into one neutron and two α\alpha-particles. We investigate the six resonances above the break-up threshold and below 6 MeV: 1/2±1/2^\pm, 3/2±3/2^\pm and 5/2±5/2^\pm. The short-distance properties of each resonance are studied, and the different angular momentum and parity configurations of the 8^8Be and 5^5He two-body substructures are determined. We compute the branching ratio for sequential decay via the 8^8Be ground state which qualitatively is consistent with measurements. We extract the momentum distributions after decay directly into the three-body continuum from the large-distance asymptotic structures. The kinematically complete results are presented as Dalitz plots as well as projections on given neutron and α\alpha-energy. The distributions are discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review

    Decay of low-lying 12C resonances within a 3alpha cluster model

    Full text link
    We compute energy distributions of three α\alpha-particles emerging from the decay of 12^{12}C resonances by means of the hyperspherical adiabatic expansion method combined with complex scaling. The large distance continuum properties of the wave functions are crucial and must be accurately calculated. The substantial changes from small to large distances determine the decay mechanisms. We illustrate by computing the energy distributions from decays of the 1+1^{+} and 33^--resonances in 12^{12}C. These states are dominated by direct and sequential decays into the three-body continuum respectively.Comment: 5 pages, 3 figures. Proceedings of the Clusters '07 conference held in Stratford-upon-Avon in September 200

    Momentum distributions of α\alpha-particles from decaying low-lying 12^{12}C-resonances

    Get PDF
    The complex scaled hyperspherical adiabatic expansion method is used to compute momentum and energy distributions of the three α\alpha-particles emerging from the decay of low-lying 12^{12}C-resonances. The large distance continuum properties of the wave functions are crucial and must be accurately calculated. We discuss separately decays of natural parity states: two 0+0^+, one 11^{-}, three 2+2^+, one 33^-, two 4+4^+, one 6+6^+, and one of each of unnatural parity, 1+1^{+}, 22^-, 3+3^+, 44^-. The lowest natural parity state of each JπJ^{\pi} decays predominantly sequentially via the 8^{8}Be ground state whereas other states including unnatural parity states predominantly decay directly to the continuum. We present Dalitz plots and systematic detailed momentum correlations of the emerging α\alpha-particles.Comment: 11 pages, 7 figures, accepted for publication in Physical Review

    Direct and sequential radiative three-body reaction rates at low temperatures

    Get PDF
    We investigate the low-temperature reaction rates for radiative capture processes of three particles. We compare direct and sequential capture mechanisms and rates using realistic phenomenological parametrizations of the corresponding photodissociation cross sections.Energy conservation prohibits sequential capture for energies smaller than that of the intermediate two-body structure. A finite width or a finite temperature allows this capture mechanism. We study generic effects of positions and widths of two- and three-body resonances for very low temperatures. We focus on nuclear reactions relevant for astrophysics, and we illustrate with realistic estimates for the α\alpha-α\alpha-α\alpha and α\alpha-α\alpha-nn radiative capture processes. The direct capture mechanism leads to reaction rates which for temperatures smaller than 0.1 GK can be several orders of magnitude larger than those of the NACRE compilation.Comment: To be published in European Physical Journal

    Three-body decays: structure, decay mechanism and fragment properties

    Full text link
    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed α\alpha-particle energy distribution after the decay of 12C(1^+) resonance at 12.7 MeV.Comment: 4 pages, 3 figures. Proceedings of the workshop "Critical Stability of Few-Body Quantum Systems" 200

    Three-body structure of low-lying 18Ne states

    Full text link
    We investigate to what extent 18Ne can be descibed as a three-body system made of an inert 16O-core and two protons. We compare to experimental data and occasionally to shell model results. We obtain three-body wave functions with the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne, the structure of the different states and the predominant transition strengths. Two 0+, two 2+, and one 4+ bound states are found where they are all known experimentally. Also one 3+ close to threshold is found and several negative parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O excited 3- state. The structures are extracted as partial wave components, as spatial sizes of matter and charge, and as probability distributions. Electromagnetic decay rates are calculated for these states. The dominating decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA

    Assessing inter-limb asymmetries in soccer players: magnitude, direction and association with performance

    Get PDF
    In this study, we aimed to analyze the magnitude and direction of interlimb asymmetries in ankle dorsiflexion range of motion (ROM), power (using iso-inertial devices), and a neuromuscular skill (change of direction). Secondarily, we aimed to determine the relationship between interlimb asymmetry scores for each test and also between these scores and the scores for the different performance tests. Sixteen semiprofessional male soccer players (age: 25.38 6.08 years; body height: 1.78 0.64 m; body mass: 79.5 14.9 kg) participated in this study. We calculated interlimb asymmetries using five tests: ankle dorsiflexion ROM, change of direction (COD 180º), and iso-inertial resistance tasks in the open (leg extension strength (LE), leg curl strength (LC)) and closed (crossover step (CRO)) kinetic chain. Our results showed that asymmetry magnitudes differed between all tests with highest interlimb asymmetries displayed during iso-inertial overloading. In addition, we observed that the direction of asymmetries varied depending on the test-specificity, and that the CRO asymmetries had a negative association with LE and CRO performance. These findings highlight the independent nature of asymmetries and that CRO could be an appropriate test to detect asymmetries related with the performance of soccer-specific actions (such as changes of direction). Practitioners are encouraged to use multiple tests to detect existing interlimb differences according to the specific characteristics of each sport

    The validity and reliability of a novel app for the measurement of change of direction performance

    Get PDF
    The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95-1.00; Standard error of the estimate = 0.03 s.; p  0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651-0.747, Coefficient of variation (CV) = 2.6-3.5%; CODTimer: ICC = 0.671-0.840, CV = 2.2-3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app
    corecore