1,685 research outputs found

    Effect of channel thickness on noise in organic electrochemical transistors

    Get PDF
    Organic electrochemical transistors (OECTs) have been widely used as transducers in electrophysiology and other biosensing applications. Their identifying characteristic is a transconductance that increases with channel thickness, and this provides a facile mechanism to achieve high signal amplification. However, little is known about their noise behavior. Here, we investigate noise and extract metrics for the signal-to-noise ratio and limit of detection in OECTs with different channel thicknesses. These metrics are shown to improve as the channel thickness increases, demonstrating that OECTs can be easily optimized to show not only high amplification, but also low noise.</jats:p

    Impact of contact overlap on transconductance and noise in organic electrochemical transistors

    Get PDF
    Abstract Organic electrochemical transistors (OECTs) from poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are used as amplifying transducers for bioelectronics. Although the impact on performance of device geometry parameters such as channel area and thickness has been widely explored, the overlap between the semiconductor film and the source and drain contacts has not been considered. Here we vary this overlap and explore its impact on transconductance and noise. We show that increasing contact overlap does not alter the magnitude of the steady-state transconductance but it does decreases the cut-off frequency. Noise was found to be independent of contact overlap and to vary according to the charge noise model. The results show that high-quality contacts can be established in PEDOT:PSS OECTs with minimal overlap.</jats:p

    Supernatants from lymphocytes stimulated with Bacillus Calmette-Guerin can modify the antigenicity of tumours and stimulate allogeneic T-cell responses

    Get PDF
    BACKGROUND: Reduced expression of class 1 human leucocyte antigens (HLA1) is often a mechanism by which tumours evade surveillance by the host immune system. This is often associated with an immune function that is unable to mount appropriate responses against disease, which can result in a state that favours carcinogenesis. METHODS: In the current study, we have explored the effects of Bacillus Calmette-Guerin (BCG) on the cytokine output of leucocytes, which is a key determinant in generating antitumour action, and have also assessed the effect of these cytokine cocktails on HLA1 expression in solid tumour cell lines. RESULTS: BCG potently activated a broad range of leucocytes, and also enhanced the production of cytokines that were Th(1)-predominant. Supernatants from BCG-treated leucocytes significantly increased the expression of HLA1 on the surface of cancer cell lines, which correlated with increased cytolytic T-cell activity. We also showed that the increased HLA1 expression was associated with activation of intracellular signalling pathways, which was triggered by the increases in the Th(1)-cytokines interferon-γ and tumour necrosis factor-α, as counteracting their effects negated the enhancement. CONCLUSION: These studies reaffirm the role of BCG as a putative immunotherapy through their cytokine-modifying effects on leucocytes and their capacity to enhance tumour visibility
    • …
    corecore