9 research outputs found

    Detecting Viral Genomes in the Female Urinary Microbiome

    Get PDF
    Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic ‘healthy’ women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community

    Bacteriophages of the Lower Urinary Tract

    Get PDF
    Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections

    virMine: automated detection of viral sequences from complex metagenomic samples

    Get PDF
    Metagenomics has enabled sequencing of viral communities from a myriad of different environments. Viral metagenomic studies routinely uncover sequences with no recognizable homology to known coding regions or genomes. Nevertheless, complete viral genomes have been constructed directly from complex community metagenomes, often through tedious manual curation. To address this, we developed the software tool virMine to identify viral genomes from raw reads representative of viral or mixed (viral and bacterial) communities. virMine automates sequence read quality control, assembly, and annotation. Researchers can easily refine their search for a specific study system and/or feature(s) of interest. In contrast to other viral genome detection tools that often rely on the recognition of viral signature sequences, virMine is not restricted by the insufficient representation of viral diversity in public data repositories. Rather, viral genomes are identified through an iterative approach, first omitting non-viral sequences. Thus, both relatives of previously characterized viruses and novel species can be detected, including both eukaryotic viruses and bacteriophages. Here we present virMine and its analysis of synthetic communities as well as metagenomic data sets from three distinctly different environments: the gut microbiota, the urinary microbiota, and freshwater viromes. Several new viral genomes were identified and annotated, thus contributing to our understanding of viral genetic diversity in these three environments

    Seven Bacteriophages Isolated from the Female Urinary Microbiota

    Get PDF
    Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders

    Bacteriophages of the Urinary Microbiome

    Get PDF
    Bacterial viruses (bacteriophages) play a significant role in microbial community dynamics. Within the human gastrointestinal tract, for instance, associations amongst bacteriophages (phages), microbiota stability, and human health have been discovered. In contrast to the gastrointestinal tract, the phages associated with the urinary microbiota are largely unknown. Preliminary metagenomic surveys of the urinary virome indicate a rich diversity of novel lytic phage sequences, at an abundance far outnumbering eukaryotic viruses. These surveys, however, exclude the lysogenic phages residing within the bacteria of the bladder. To characterize this phage population, we examined 181 genomes representative of the phylogenetic diversity of bacterial species within the female urinary microbiota and found 457 phage sequences, 226 of which were predicted with high confidence. Phages were prevalent within the bladder bacteria: 86% of the genomes examined contained at least one phage sequence. Most of these phages are novel, exhibiting no discernible sequence homology to public data repositories. The presence of phages with substantial sequence similarity within the microbiota of different women supports the existence of a core community of phages within the bladder. Furthermore, the observed variation between the phage populations of women with and without overactive bladder symptoms suggests that phages may contribute to urinary health. To complement our bioinformatic analyses, viable phages were cultivated from the bacterial isolates for characterization; a novel coliphage was isolated, which is obligately lytic in the laboratory strain E. coli C. Sequencing of bacterial genomes facilitates a comprehensive cataloguing of the urinary virome while also revealing phage-host interactions.Importance Bacteriophages are abundant within the human body. But while some niches have been well surveyed, the phage population within the urinary microbiome is largely unknown. Our study is the first survey of the lysogenic phage population within the urinary microbiota. Most notably, the abundance of prophage exceeds that of the bacteria. Furthermore, many of the prophage sequences identified exhibited no recognizable sequence homology to data repositories. This suggests a rich diversity of uncharacterized phage species present in the bladder. Additionally, we observed a variation in the abundance of phages between bacteria isolated from asymptomatic \u27healthy\u27 individuals and those with urinary symptoms thus suggesting that, like phages within the gut, phages within the bladder may contribute to urinary health

    Genomic Survey of E. coli From the Bladders of Women With and Without Lower Urinary Tract Symptoms

    Get PDF
    Urinary tract infections (UTIs) are one of the most common human bacterial infections. While UTIs are commonly associated with colonization by Escherichia coli, members of this species also have been found within the bladder of individuals with no lower urinary tract symptoms (no LUTS), also known as asymptomatic bacteriuria. Prior studies have found that both uropathogenic E. coli (UPEC) strains and E. coli isolates that are not associated with UTIs encode for virulence factors. Thus, the reason(s) why E. coli sometimes causes UTI-like symptoms remain(s) elusive. In this study, the genomes of 66 E. coli isolates from adult female bladders were sequenced. These isolates were collected from four cohorts, including women: (1) without lower urinary tract symptoms, (2) overactive bladder symptoms, (3) urgency urinary incontinence, and (4) a clinical diagnosis of UTI. Comparative genomic analyses were conducted, including core and accessory genome analyses, virulence and motility gene analyses, and antibiotic resistance prediction and testing. We found that the genomic content of these 66 E. coli isolates does not correspond with the participant’s symptom status. We thus looked beyond the E. coli genomes to the composition of the entire urobiome and found that the presence of E. coli alone was not sufficient to distinguish between the urobiomes of individuals with UTI and those with no LUTS. Because E. coli presence, abundance, and genomic content appear to be weak predictors of UTI status, we hypothesize that UTI symptoms associated with detection of E. coli are more likely the result of urobiome composition

    Mimicking prophage induction in the body: induction in the lab with pH gradients

    Get PDF
    The majority of bacteria within the human body are lysogens, often harboring multiple bacteriophage sequences (prophages) within their genomes. While several different types of environmental stresses can trigger or induce prophages to enter into the lytic cycle, they have yet to be fully explored and understood in the human microbiota. In the laboratory, the most common induction method is the DNA damaging chemical Mitomycin C. Although pH has been listed in the literature as an induction method, it is not widely used. Here, we detail a protocol for prophage induction by culture under different pH conditions. We explored the effects of pH on prophage induction in bacterial isolates from the bladder, where the pH is well documented to vary significantly between individuals as well as between healthy individuals and individuals with urinary tract symptoms or disease. Using this protocol, we successfully induced phages from seven bladder E. coli strains. Testing conditions and stressors appropriate to the environment from which a lysogen is isolated may provide insight into community dynamics of the human microbiota

    Pre-TAVI imaging:an Italian survey by the CT PRotocol optimization (CT-PRO) group

    Get PDF
    Purpose: The purpose of this survey was to evaluate the current state-of-art of pre-TAVI imaging in a large radiological professional community. Methods: Between December 2022 and January 2023 all members of the Italian Society of Medical and Interventional Radiology (SIRM) were invited by the CT PRotocol Optimization group (CT-PRO group) to complete an online 24-item questionnaire about pre-TAVI imaging. Results: 557 SIRM members participated in the survey. The greatest part of respondents were consultant radiologists employed in public hospitals and 84% claimed to routinely perform pre-TAVI imaging at their institutions. The most widespread acquisition protocol consisted of an ECG-gated CT angiography (CTA) scan of the aortic root and heart followed by a non-ECG-synchronized CTA of the thorax, abdomen, and pelvis. Contrast agent administration was generally tailored on the patient’s body weight with a preference for using high concentration contrast media. The reports were commonly written by radiologists with expertise in cardiovascular imaging, and included all the measurements suggested by current guidelines for adequate pre-procedural planning. About 60% of the subjects affirmed that the Heart Team is present at their institutions, however only 7% of the respondents regularly attended the multidisciplinary meetings. Conclusions: This survey defines the current pre-TAVI imaging practice in a large radiological professional community. Interestingly, despite the majority of radiologists follow the current guidelines regarding acquisition and reporting of pre-TAVI imaging studies, there is still a noteworthy absence from multidisciplinary meetings and from the Heart Team.</p

    Handheld Ultrasound or Conventional Ultrasound Devices in Patients Undergoing HCT: A Validation Study

    No full text
    Abdominal ultrasound exams play a major role in the diagnosis of sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD). The development of portable hand-held ultrasound devices (HHUS) has been shown to facilitate the diagnosis of many diseases, but little data on the value of HHUS in the diagnosis of SOS/VOD are available. We performed a study aimed at validating portable ultrasound (US) devices in the setting of hematopoietic stem cell transplant (HCT). Sixteen evaluable patients undergoing allogeneic HCT were studied using conventional US and HHUS during the first 3 weeks after transplant. The results obtained demonstrate that there is a close correlation between conventional and handheld ultrasound examination in the measurement of the right hepatic lobe (r = 0.912, p p p p p p p < 0.0001). HHUS device allows the study of HokUs-10 parameters with an excellent agreement with conventional US, and may contribute to SOS/VOD diagnosis
    corecore