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ABSTRACT
Metagenomics has enabled sequencing of viral communities from a myriad of differ-
ent environments. Viral metagenomic studies routinely uncover sequences with no
recognizable homology to known coding regions or genomes. Nevertheless, complete
viral genomes have been constructed directly from complex community metagenomes,
often through tedious manual curation. To address this, we developed the software
tool virMine to identify viral genomes from raw reads representative of viral or mixed
(viral and bacterial) communities. virMine automates sequence read quality control,
assembly, and annotation. Researchers can easily refine their search for a specific study
system and/or feature(s) of interest. In contrast to other viral genome detection tools
that often rely on the recognition of viral signature sequences, virMine is not restricted
by the insufficient representation of viral diversity in public data repositories. Rather,
viral genomes are identified through an iterative approach, first omitting non-viral
sequences. Thus, both relatives of previously characterized viruses and novel species
can be detected, including both eukaryotic viruses and bacteriophages. Here we present
virMine and its analysis of synthetic communities as well asmetagenomic data sets from
three distinctly different environments: the gut microbiota, the urinary microbiota,
and freshwater viromes. Several new viral genomes were identified and annotated, thus
contributing to our understanding of viral genetic diversity in these three environments.

Subjects Bioinformatics, Computational Biology, Genomics, Microbiology, Virology
Keywords Virome, Metagenomics, Bacteriophage, Human microbiome, Freshwater virome

INTRODUCTION
In contrast to eukaryotic and prokaryotic organisms, only a small fraction of viral
genomes has been sequenced and characterized. Viral metagenomic studies have been
pivotal in increasing our understanding of viral diversity on Earth. Numerous habitats
have been explored, such as: marine waters (Breitbart et al., 2002; Yooseph et al., 2007;
Hurwitz & Sullivan, 2013; Brum et al., 2015; Coutinho et al., 2017; Zeigler Allen et al., 2017;
see reviewBrum & Sullivan, 2015), soil (Fierer et al., 2007;Zablocki et al., 2014;Adriaenssens
et al., 2017; see review Pratama & Van Elsas, 2018), freshwaters (López-Bueno et al., 2009;
López-Bueno et al., 2015; Roux et al., 2012; see review Bruder et al., 2016), and the human
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microbiota (e.g., Reyes et al., 2010; Minot et al., 2011; Minot et al., 2013; Pride et al., 2012;
Hannigan et al., 2015; Santiago-Rodriguez et al., 2015; Miller-Ensminger et al., 2018; see
review Abeles & Pride, 2014). Recent evidence has uncovered that viral members of the
human microbiota (see reviews Barr, 2017; Keen & Dantas, 2018) and marine environment
(see reviews Breitbart et al., 2018) play a more pivotal role than once thought. Regardless of
the environment explored, the overwhelming majority of viral sequences produced exhibit
no sequence homology to characterized viral species. Even for the well-studied marine viral
communities, over 60% of the coding regions predicted are completely novel (Coutinho
et al., 2017).

While metagenomics has been fruitful in identifying gene markers (e.g., 16S rRNA
gene) and genomes of uncultivated eukaryotic and prokaryotic species (Hug et al., 2016),
surveys of viromes face unique challenges (Bruder et al., 2016;Rose et al., 2016). First, unlike
cellular organisms, there is no universally conserved gene in viruses. Viruses span a high
degree of genetic diversity and are inherently mosaic (Hatfull, 2008). Second, even when
sequencing purified virions, sequencing data often includes non-viral (host) DNA. This is
further complicated by the fact that viral genomic DNA is often orders of magnitude less
abundant than host cells or other organisms in the sample. In addition to the development
of experimental procedures for viral metagenomics (e.g., Conceição Neto et al., 2015;Hayes
et al., 2017; Lewandowska et al., 2017), several bioinformatic solutions have been created
to aid in detecting viral sequences within mixed communities (e.g., Roux et al., 2015;
Hatzopoulos, Watkins & Putonti, 2016; Yamashita, Sekizuka & Kuroda, 2016; Ren et al.,
2017; Amgarten et al., 2018; see reviews Hurwitz et al., 2018; Nooij et al., 2018). Third,
extant viral data repositories do not include sufficient representation of viral species. Thus,
tools reliant upon identifying sequence homology, such as those for bacterial metagenome
analysis (see review Nayfach & Pollard, 2016), have limited application in virome studies.

The identification of viral genomes from samples containing a single or a few viral
species is relatively straight-forward, even in the presence of a large background of non-
viral sequences. An example of such an inquiry would be the search for potential viral
pathogens from clinical samples. Software tools including VIP (Li et al., 2016b), VirAmp
(Wan et al., 2015), and VirFind (Ho & Tzanetakis, 2014) were designed specifically for
such cases. They are, however, limited to the isolation of known viral taxa; complex viral
communities pose significantly greater challenges. Typically, one of two approaches is taken.
The first approach identifies contigs from metagenomic data sets based upon sequence
attributes, e.g., their nucleotide usage profiles (Ren et al., 2017), and/or contig coverage
(see reviews Sharon & Banfield, 2013;Garza & Dutilh, 2015; Sangwan, Xia & Gilbert, 2016).
The second, more frequently pursued method, relies largely on recognizable homologies
to known viral sequences, e.g., Phage Eco-Locator (Aziz et al., 2011), VIROME (Wommack
et al., 2012), MetaVir (Roux et al., 2014), VirSorter (Roux et al., 2015), MetaPhinder (Jurtz
et al., 2016), VirusSeeker (Zhao et al., 2017), and FastViromeExplorer (Tithi et al., 2018).
The tool MARVEL integrates the two approaches, predicting tailed phage sequences
based upon genomic features (gene density and strand shifts) and sequence homologies
(Amgarten et al., 2018). Regardless of the approach taken, manual curation and inspection
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is often a critical step in the process. Several complete viral genomes have been mined
from metagenomic data through inspection of sequences based upon their size, coverage,
circularity, or sequence homology to annotated viral genes or genes of interest (e.g., Inskeep
et al., 2013; Labonté & Suttle, 2013; Dutilh et al., 2014; Smits et al., 2014; Smits et al., 2015;
Bellas, Anesio & Barker, 2015; Rosario et al., 2015; Zhang et al., 2015; Paez-Espino et al.,
2016; Voorhies et al., 2016; Coutinho et al., 2017; Ghai et al., 2017;Watkins, Sible & Putonti,
2018). These efforts have uncovered novel viral species, furthering our understanding of
genetic diversity in nature.

Here we present virMine for the identification of viral genomes withinmetagenomic data
sets. virMine automates the process of discovery; from raw sequence read quality control
through assembly and annotation. virMine incorporates a variety of publicly available
tools and user-defined criteria. In contrast to previous bioinformatic tools which search
for viral ‘‘signatures’’ based on our limited knowledge of viral diversity on Earth, virMine
takes advantage of the wealth of sequence data available for cellular organisms. Thus,
viral (bacteriophage and eukaryotic virus) discovery is conducted through the process
of excluding what we know not to be viral. Those sequences which are not ‘‘non-viral’’
(i.e., putative viral sequences) are then compared to a database of viral sequences. This
comparison distinguishes putative viral sequences similar to known viral sequences and
those which may represent novel viruses for downstream analyses. A beta version of this
tool was used to isolate viral sequences from urinary metagenome data sets (Garretto et al.,
2018). Here we illustrate the utility of this tool using four case-studies: synthetic data sets,
gut microbiomes, urinary viromes, and freshwater viromes, resulting in the identification
of new strains of known viruses as well as novel viral genomes.

MATERIALS & METHODS
Pipeline development
The pipeline integrates existing tools as well as new algorithms using Python and the
BioPython library (Cock et al., 2009). Figure 1 depicts the process employed by virMine.
A key aspect of the tool is its flexibility; it was designed to be modular, allowing users to
access functionality individually or execute the full pipeline. While several methods have
been incorporated in this release (Table 1), new tools can be added easily. Furthermore,
to facilitate targeted analyses, filtration options and customization is available for users
without any programming expertise.

Users can supply either raw Illumina sequencing reads (single-end or paired-end) or
assembled contigs/scaffolds. In the case in which reads are supplied, the raw sequencing
data is evaluated using the quality control tool Sickle (https://github.com/najoshi/sickle).
Reads are trimmed, generating high quality data for assembly. Presently, the pipeline
performs assembly by one of three methods: SPAdes (Bankevich et al., 2012), metaSPAdes
(Nurk et al., 2017), and MEGAHIT (Li et al., 2016a). These assemblers were selected as
they include tools better equipped for assembly of low complexity samples (SPAdes) and
those developed for complex metagenomes (metaSPAdes andMEGAHIT). In a prior study
comparing tools for assembly of phage genomes from single or low complexity samples
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Figure 1 Overview of virMine pipeline. Tools integrated into the pipeline are listed in red. The
sequences for viral contigs predicted with high confidence (‘‘viral_contigs’’) and putative viral contigs
(‘‘unkn_contigs’’) are written to file.

Full-size DOI: 10.7717/peerj.6695/fig-1

(Rihtman et al., 2016), the SPAdes assembler (Bankevich et al., 2012) outperformed other
tools tested. virMine also includes the assembly option ‘‘all3’’. This option assembles the
reads using SPAdes, metaSPAdes, and MEGAHIT and selects the assembly with the highest
N 50 score for downstream analysis. The virMine command line includes a flag for the
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Table 1 Software integrated into the virMine pipeline.

Tool Version Task Citation

Sickle 1.33 Read trimming https://github.com/najoshi/sickle
SPAdes 3.10.1 Assembly Bankevich et al. (2012)
metaSPAdes 3.10.1 Assembly Nurk et al. (2017)
MEGAHIT 1.1.4 Assembly Li et al. (2016a)
BBMap 37.36 Coverage https://sourceforge.net/projects/bbmap/
GLIMMER 3.02 Gene prediction Delcher et al. (1999)
BLAST+ 2.6.0 Sequence Analysis ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

user to specify the number of threads to be used during assembly to best utilize multi-core
resources.

Next, virMine includes several options for the user to filter the assembled contigs.
This can include minimum and/or maximum contig length, minimum contig coverage,
and presence of genes or sequences (such as CRISPR spacer sequences) of interest.
Coverage is calculated by remapping the original reads to the contigs, and the per contig
coverage is calculated via BBMap (https://sourceforge.net/projects/bbmap/). Coverage is
not reported if this option is not selected. Alternatively, when SPAdes (Bankevich et al.,
2012) or metaSPAdes (Nurk et al., 2017) is used for assembly, users can select to use the
SPAdes ‘‘cov’’ value as a filter. Users can also provide FASTA format sequences of interest
(e.g., gene sequences encoding for a specific functionality); contigs are then queried against
this data set using blastx. Results with a bitscore >50 are considered real hits and only
contigs containing these hits will be considered further. Any or all of these filters can
be selected by the user. Furthermore, the order in which they are specified by the user
determines the order in which the filters are applied.

In Step 3, coding regions are predicted for each contig. Open reading frame (ORF)
prediction is conducted using the tool GLIMMER (Delcher et al., 1999). Coding regions are
predicted using a modified GLIMMER script (available through our GitHub repository),
trained to accommodate characteristics of viral genes, e.g., overlapping genes (Chirico,
Vianelli & Belshaw, 2010) and short coding regions.

In the final step, each predicted ORF is compared to two databases—a collection of
non-viral sequences and a collection of known viral sequences. These two databases can
be manually curated data collections or obtained from public repositories. While the
GitHub repository for virMine includes a script to generate databases from NCBI’s RefSeq
collection, anymulti-fasta file of amino acid sequences can be used to create these databases;
the user need only supply the multi-fasta files. Comparisons against these two databases
are facilitated via the BLAST+ application (Camacho et al., 2009). Users can select to use
either a blastp (protein query) or blastx (translated nucleotide) query. While blastx is more
exhaustive, blastp is more expedient. Again, the threads flag is used here to expedite these
comparisons. All hits are reported from both databases; the bitscores for each ORF’s hits
to the two databases are compared, and the ORF is called ‘‘viral’’ or ‘‘non-viral’’ based
upon the hit with the greater bitscore. Contigs with more ‘‘viral’’ calls are predicted as
viral and are written to file (‘‘viral_contigs.fasta’’), as are their ORF predictions and BLAST
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(either blastx or blastp) results. Contigs containing ORFs with no recognizable sequence
homology to the viral database or non-viral database are classified as ‘‘unknown’’. These
putative viral contigs (‘‘unkn_contigs.fasta’’) and their ORF predictions are also written to
file, as these sequences may represent truly novel species.

Tool availability
virMine is available through a Docker image at https://github.com/thatzopoulos/virMine;
Docker builds the necessary environment. This repository also includes scripts for
generating curated viral and bacterial databases from GenBank. The user can save the
contents of their run locally, as well as supply their own input files prior to the building of
the environment, by following the steps listed in the GitHub repository. This pipeline can
be run on any system supporting Docker (https://www.docker.com/). Development and
testing were conducted on the Ubuntu and MacOSX operating systems.

Data sets
The pipeline includes two databases for distinguishing between non-viral and viral
sequences. Two data sets were created for our proof-of-concept work. The viral database
includes amino acid sequences from all RefSeq (O’Leary et al., 2016) viral genomes and can
be retrieved directly online at ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/all.faa.tar.gz.
This data set includes both eukaryotic viruses and phages. The non-viral data set used
for our proof-of-concept work was created using the bacterial COGs collection (Galperin
et al., 2015), excluding coding sequences in the category X of phage-derived proteins,
transposases, and other mobilome components. The GitHub repository for virMine
includes a script to create these two databases.

For the proof-of-concept studies presented in the results, four data sets were used.
The first is a synthetic data set for benchmarking purposes. Sequencing read sets for
a single ‘‘non-viral’’ sequence (Pseudomonas aeruginosa UW4 (NC_019670.1)) and a
single viral sequence (Pseudomonas phage PB1 (NC_011810.1)) were created at various
‘‘concentrations’’ using the tool MetaSim (Richter et al., 2008). These synthetic data sets
were made both with and without mutations introduced. (Mutations were introduced
using the evolve function in which the parameters ‘‘number of leaves (Yule-Harding Tree)’’
and ‘‘Jukes-Cantor Model Alpha’’ were set to the defaults 100 and 0.0010, respectively.)
Raw sequencing reads were also obtained from five different studies including the gut
microbiota (Qin et al., 2010; Reyes et al., 2010), the urinary microbiota (Santiago-Rodriguez
et al., 2015), and freshwater viromes (Sible et al., 2015; Skvortsov et al., 2016). Table 2
summarizes these data sets; details regarding the URLs for these data sets can be found in
File S1.

Local BLAST searches of contigs were conducted using the complete nr/nt database
(downloaded 6/24/2017). Remote BLAST queries were conducted through the NCBI
website. Genome annotations were generated using RAST (Aziz et al., 2008), previously
used for phage genome annotations (McNair et al., 2018). Contig mapping to complete
genome sequences was performed using Bowtie2 (Langmead & Salzberg, 2012).
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Table 2 Complex community microbiomes examined for virMine proof-of-concept study.

Sample Study details Sequencing technology # samples # reads
(millions)

Synthetic P. aeruginosa and Pseudomonas phage PB1 genomes N/A 22 4.4
A subset of faecal microbiota of monozygot twins and their
mothers (Reyes et al., 2010)

454 FLX 3 0.66

Gut Microbiomes
A subset of faecal samples from 124 European individuals
(Qin et al., 2010)

Illumina Genome Analyzer 55 1141.33

Urinary Viromes UTI positive urine samples (Santiago-Rodriguez et al., 2015) Ion Torrent PGM 10 6.22
A subset of samples from Lake Michigan nearshore waters
(Sible et al., 2015)

Illumina MiSeq 4 13.46

Freshwater Viromes
Viral community of Lough Neagh (Skvortsov et al., 2016) Illumina MiSeq 1 4.60

RESULTS & DISCUSSION
virMine is a single tool to perform raw read quality control, assembly, annotation, and
analysis (Fig. 1). The virMine tool, as described in the Methods, identifies viral sequences
and putative viral sequences inmetagenomic data sets by harnessing the wealth of non-viral
sequence data available; contigs are scored based upon their similarity to non-viral and
viral sequences. Four case studies were derived to test the efficacy of the virMine software
tool, including one synthetic data set and three different environmental samples from the
gut, urine, and freshwaters.

Case study 1: synthetic data sets
Sequencing reads were generated using the tool MetaSim (Richter et al., 2008) using a
sample ‘‘non-viral’’ genome sequence, Pseudomonas aeruginosa UW4 genome (GenBank:
NC_019670), and a viral genome sequence, Pseudomonas phage PB1 (GenBank:
NC_011810). Eleven synthetic data sets were created in which 0% through 100%
(increments of 10%) of the data set comprised of ‘‘reads’’ from the phage genome
sequence. Each synthetic data set was processed independently; assemblies were generated
using SPAdes (Bankevich et al., 2012) with the requirement that the coverage (-cov flag) be
greater than or equal to three.

Figure 2 summarizes the results of the analyses. When 50% or more of the reads were
from the PB1 genome, the complete PB1 genome could be reconstructed. As theN 50 scores
for each of the runs show, the length of the virMine assembled viral genome exceeds that of
the PB1 genome (65,764 bps); this is a residual of the direct terminal repeats (DTRs) in the
PB1 sequence. The presence of DTRs frequently leads to ‘‘wrap-around’’ reads contained
within the genome assembly (Merrill et al., 2016). Each contig that did not correspond
with the PB1 genome, including those identified within the 0% PB1 genome data set, was
further examined via local blastn against the nr/nt database (File S2). As Fig. 2 shows, even
for the synthetic data set with no reads from the PB1 genome, two contigs were predicted
by virMine to be viral. We further investigated these contigs, 1021 and 1007 bp in length;
the first contig is homologous to an IS3 family transposase (GenBank: AFY17357) and an
IS110 family transposase (GenBank: AFY17680), respectively. As these transposases are

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 7/21

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/NC_019670
http://www.ncbi.nlm.nih.gov/nuccore/NC_011810
http://dx.doi.org/10.7717/peerj.6695#supp-2
http://www.ncbi.nlm.nih.gov/protein/AFY17357
http://www.ncbi.nlm.nih.gov/protein/AFY17680
http://dx.doi.org/10.7717/peerj.6695


0

1

2

3

4

5

# 
co

nt
ig

s

Data Set (% reads from PB1 genome)

viral
unknown

65891

100
65887

50

65891

90

169

65891

80

318

65891

70

137

65890

60

157

1981

40

151

1072

20

135

5326

10

262

1021

0

575

30

154
Figure 2 Number of contigs assembled for each of the synthetic data sets predicted as viral (black
bars) or of unknown origin (gray bars). The N50 score of the assembled contigs in each group is indicated
within the corresponding bars.

Full-size DOI: 10.7717/peerj.6695/fig-2

assigned COG id numbers within the category X, they were excluded from the non-viral
database and thus not recognized as non-viral. Transposases are abundant in nature and
have been found within phage genomes (Aziz, Breitbart & Edwards, 2010).

MetaSim (Richter et al., 2008) was used again to produce synthetic data sets for the
P. aeruginosa and Pseudomonas phage PB1, this time introducing mutation (population-
based random mutator; see Methods). As shown in File S2, the assemblies produced were
significantly more fragmented (lower N 50 scores); even when all reads were derived from
the PB1 genome sequence, the N 50 score was only 762 bp (in contrast to the single, full
genome contig produced with the read sets generated without mutation). It is interesting
to note that while the assemblers could not reconstruct the full genome or longer contigs,
virMine still classified contigs as viral and subsequent blastn analyses were able to resolve
the origin of the sequence.

Case study 2: gut microbiomes
Two separate gut microbiome data sets were examined (Table 2). The first includes the
sequence data sets that were examined leading to the discovery of the crAssphage genome
sequence (97,065 bp) (Dutilh et al., 2014): the data set ofReyes et al. (2010). The crAssphage
has since been detected in raw sewage and sewage impacted water samples (Stachler et al.,
2017). Similar to the methods employed in the discovery of the crAssphage, both the
sequence data sets of the individual samples and an aggregate of all reads were assembled
by virMine using SPAdes (Bankevich et al., 2012). Numerous sequences predicted to be viral
were identified within the individual samples (727 total) and the aggregate data set (927
total) (File S2). Local blastn analyses identified many of these contigs as representative of
transposases and integrases. The abundance of transposase sequences within metagenomic
sequences has previously been noted for a variety of environments (Brazelton & Baross,
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Figure 3 Coverage of crAssphage by contigs predicted by virMine as viral or unknown.
Full-size DOI: 10.7717/peerj.6695/fig-3

2009;Aziz, Breitbart & Edwards, 2010;Vigil-Stenman et al., 2017).We compared the contigs
identified as viral to the crAssphage genome sequence (GenBank: JQ995537). 94.88% of the
crAssphage genome was represented in 372 contigs identified as viral sequences. Coverage
of the crAssphage increases when contigs classified as unknown are considered: 98.32% of
the genome is represented in 613 contigs (Fig. 3). Several other complete viral genomes
were also identified by virMine including a Gokushovirus and Microvirus exhibiting
homology to the sequenced genomes of Gokushovirus WZ-2015a (GenBank: KT264754)
and the newly discovered Microviridae sp. isolate ctci6 (GenBank: MH617627). It is worth
noting that this Microviridae genome was not included in our viral database and exhibits
no significant homology to other records in the current BLAST Nucleotide collection.
The second gut microbiota data set was a subset of the fecal samples from 124 European
individuals (Qin et al., 2010). Most of this data set is bacterial in origin, with only 0.1%
predicted by the authors of the study to be of eukaryotic and viral origin. Using virMine we
also found that most of the sequences were likely bacterial (File S2). However, we found
that the prediction of the study’s authors underestimated the viral population; 1.31–38.43%
of the assembled contigs were predicted by virMine to be viral in origin. We hypothesize
that this discrepancy may be due to prophage sequences. As our previous analysis with
the beta version of the software showed, virMine can identify prophage sequences within
bacterial genome contigs as well as extrachromosomal viruses (Garretto et al., 2018). This
underestimatemay also be a result of our increased knowledge of viral diversity; the number
of viral sequences in GenBank has tripled since the study ofQin et al. (2010)was published.
The summary of our analysis of the 55 samples from this study are listed in File S2. In total
28,673 and 311,457 contigs were categorized as viral and unknown, respectively.

Case study 3: urinary viromes
Ten data sets, collected from individuals with urinary tract infections (Santiago-Rodriguez
et al., 2015), were selected for analysis. In contrast to the gutmicrobiomes examined in Case
Study 2, these samples were prepared such that the majority (if not all) of the sequenced
DNA was representative of the viral fraction (Santiago-Rodriguez et al., 2015). Exploration
of the urinary virome has only recently begun. Of the few viral metagenomic studies of
the urinary microbiota (Santiago-Rodriguez et al., 2015; Rani et al., 2016; Thannesberger
et al., 2017; Garretto et al., 2018; Miller-Ensminger et al., 2018; Moustafa et al., 2018), most
of the identifiable sequences are similar to characterized phage sequences. Nevertheless,
the vast majority of contigs exhibit no identifiable homology to sequence databases. As
summarized in File S2, each sample consisted of more contigs in the ‘‘unknown’’ category
than the ‘‘viral’’ category. We selected the larger contigs (>5,000 bp) that were predicted
as viral and queried them via megablast against the nr/nt database online. Table 3 presents
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Table 3 BLAST homology for longer (>5,000 bp) contigs predicted as viral.

SRA Run # BLAST hit Accession # Contig
length

% ID %QC

Cyanothece sp. PCC 7822 CP002198 14,157 73 0
MGM4568637

Choristoneura rosaceana entomopoxvirus ‘L’ HF679133 11,424 66 15
Erlichia canis strain YZ-1a CP02479 12,310 73 8

MGM4568639
Burkholderia sp. MSMB0856 CP013427 5,156 71 5
Clostridium taeniosporum strain 1/k CP017253 7,987 69 2

MGM4568640
Escherichia phage YDC107_2 CP025713 5,479 96 88
Enterococcus faecalis V583a AE016830 16,416 95 95
Uncultured Mediterranean phage uvMED AP013535 13,087 79 1
Turicibacter sp. H121 CP013476 7,825 83 0

MGM4568641

Enterococcus faecalis strain L9a CP018004 5,086 99 100
Choristoneura rosaceana entomopoxvirus ‘L’ HF679133 9,301 66 27

MGM4568642
Protochlamydia naegleriophila PNK1 LN879502 5,312 83 1
Rickettsiales bacterium Ac37ba CP009217 8,302 66 11

MGM4568645
Rickettsiales bacterium Ac37ba CP009217 8,215 68 19

Notes.
aIndicates BLAST homologies to annotated prophage regions.

the results of this search. virMine identified similarities to annotated prophage sequences
(indicated by asterisks), extrachromosomal phages, and eukaryotic viral sequences.

Case study 4: freshwater viromes
Two freshwater viromes were considered. The first includes four samples from the Lake
Michigan nearshore waters, collected by our group (Sible et al., 2015;Watkins et al., 2016).
The second includes samples taken from Lough Neagh, the largest freshwater lake in
Ireland (Skvortsov et al., 2016). The summary statistics for our analysis are included in File
S2. Sequences predicted to be viral within the four Lake Michigan data sets were inspected.
Hits to known viral sequences varied between samples; in total, sequence homologies
were detected to 834 different phage (n= 425) and eukaryotic viruses (n= 409). Figure 4
illustrates the species, predominantly phages, with the most hits. From the Lough Neagh
data set, nine contigs were identified by virMine as viral and had a length greater than
40 Kbp. In the study introducing this data set (Skvortsov et al., 2016), only five contigs
were produced meeting this length threshold. (The IDBA-UD assembler (Peng et al., 2012)
was used in the original analysis of this data set (Skvortsov et al., 2016).) Each contig was
submitted to RAST (Aziz et al., 2008) for annotation and each was found to contain phage-
related genes (File S3), suggesting that the contigs represented complete or partial phage
genomes. We next queried each contig against the nr/nt database via blastn identifying
only modest sequence homology to bacterial, phage, and uncultured viral isolate sequences
(Table 4). These contigs thus represent likely novel viral sequences.

virMine performance
To assess the performance of virMine, the freshwater data sets were also examined using
the viral sequence identification tool VirSorter (v. 1.0.3) (Roux et al., 2015). For all five
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0
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Figure 4 Viral species most frequently detected within the LakeMichigan data sets.
Full-size DOI: 10.7717/peerj.6695/fig-4

data sets, we found that very few contigs were predicted as viral by both tools. For instance,
in the Lough Neagh data set, VirSorter only identified (a category 2 prediction) one of
the nine virMine contigs (length > 40 Kbp). This prompted our manual inspection of
these results. Herein we present the results for one of the samples from Lake Michigan
(SRA accession number SRR1296481), representative of what we found in all sets. virMine
predicted 60 of the 1,518 assembled contigs as viral. VirSorter predicted only 20 viral
sequences (two category 1; five category 2; six category 3; no category 4; four category 5;
and three category 6). Only two sequences were predicted by both tools. As virMine was
designed for identifying viral contigs and VirSorter was designed to identify both viral
contigs (categories 1–3) and prophages (categories 4–6), it is not surprising that both
contigs detected by the two tools were VirSorter category 2 sequences. (While virMine
can identify prophages, as was shown previously (Garretto et al., 2018), it will not identify
prophages within large bacterial contigs.) BLAST queries to the nr/nt database of the
sequences uniquely identified by virMine and VirSorter are listed in File S3; many of these
predicted sequences exhibited homology to bacterial RNAs (rRNA and tRNA). Only four
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Table 4 Viral genome sequences identified by virMine from the Lough Neagh virome (Skvortsov et al., 2016).

Contig Length # CDS BLAST hit Accession # %QC % ID Isolation source

contig_11 46,867 71 Chromobacterium rhizoyzae
strain JP2-74

CP031968.1 1 80 Rhizosphere

contig_12 46,702 74 Uncultured marine virus isolate
CBSM-242

FJ640348.1 0 83 Chesapeake Bay sediment

contig_13 46,245 60 Bacteriophage 11b AJ842011.2 1 68 Arctic sea ice
contig_17 40,578 56 Methylobacterium brachiatum

strain TX0642
CP033231.1 6 67 Automobile air-

conditioning evaporator
contig_18 40,568 61 Blastochloris sp. GI AP018907.1 0 72 Soda dam hot springs
contig_2a 70,520 92 Uncultured virus

YBW_Contig_50752
KU756933.1 1 72 North Sea Surface Water

Virome
contig_5 56,143 55 Uncultured virus SERC 372681 KU595468.1 2 73 Rhode River surface water
contig_6 55,961 75 Polynucleobacter asymbioticus

strain MWH-RechtKol4
CP015017.1 1 71 freshwater

contig_7 55,939 77 Uncultured virus SERC Contig
695464

KU971113.1 0 76 Rhode River surface water

Notes.
aContig also predicted as viral by VirSorter (Roux et al., 2015).

additional sequences (two predicted by virMine and two predicted by VirSorter) exhibited
homology to genes/sequences annotated as phage.

Our comparison of virMine to VirSorter highlights the importance of manual inspection
of results. In contrast to VirSorter and, e.g., VirFinder, virMine not only predicts viral
sequences but also reports the blast results of these sequences. This aids in the manual
inspection of the virMine predictions. It is important to note that our comparison here,
however, is not entirely an equivalent assessment: VirSorter relies on a different sequence
database than virMine. As described in Roux et al. (2015), two reference databases are
used by VirSorter. These databases have been updated to version 2 since the time of its
publication, and details regarding this update are not readily available. In fact, the viral
databases used by existing tools varies greatly. VirSorter and MARVEL restrict their viral
database to phages, all phages and dsDNA phages from theCaudovirales order, respectively.
However, virMine includes all viral sequences—phages as well as eukaryotic viruses. As
shown in Fig. 4, a number of hits to eukaryotic viruses were identified within the Lake
Michigan data sets. While VirusSeeker’s database is not restricted to phage sequences, as
it too contains eukaryotic viral sequences, it is a curated database (last updated August
2016). Currently, MetaPhinder’s and MetaVir’s databases are also out of date; both were
last updated in 2017. virMine’s database is entirely controlled by the user and can include
all data currently available. Just as virMine allows the user to create their own custom
databases, so too does FastViromeExplorer. FastViromeExplorer requires the user to
format files for use. In contrast, virMine only necessitates a multi-fasta file which can easily
be retrieved from publicly available databases like NCBI and IMG/VR or via user-specific
queries of public sequence repositories.
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CONCLUSIONS
As highlighted in the recent report of the International Committee on Taxonomy of Viruses
(ICTV) Executive Committee, genomes identified from metagenomic data will vastly
expand our catalog of viral diversity (Simmonds et al., 2017). Within just the past two years,
there has been an explosive growth of the number of uncultivated viral genomes identified
within metagenomic data (Roux et al., 2018). Our analysis of complex communities has
uncovered numerous novel viral genomes. virMine is capable of identifying both prophages
in contigs and viral sequences. In contrast to other tools that rely solely on viral sequence
availability, virMine makes use of a far larger, more comprehensive data set—non-viral
sequences. Furthermore, the entire process from raw sequence quality control through
analysis is packaged into a single tool providing a ‘‘consensus’’ solution for viral genome
discovery (Dutilh et al., 2017). Manual inspection of virMine results can thus lead to the
identification of viral sequences resembling known viruses as well as novel viral strains. As
exemplified here, virMine can be used to identify viruses in any niche and thus further our
understanding of this vast reservoir of genetic diversity.

ACKNOWLEDGEMENTS
The authors would like to thank Ms. Ally Miley for conversations during the development
of this tool and Dr. Jason Shapiro for his feedback on earlier versions of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Science Foundation (grant number 1149387) to
Catherine Putonti. Andrea Garretto was supported by Loyola University Chicago’s Carbon
Research Fellowship and the CRA-W’s CREU program. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Science Foundation: 1149387.
Loyola University Chicago’s Carbon Research Fellowship.
CRA-W’s CREU program.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Andrea Garretto performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.
• Thomas Hatzopoulos performed the experiments, analyzed the data, approved the final
draft.
• Catherine Putonti conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.6695


Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub: https://github.com/thatzopoulos/virMine.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6695#supplemental-information.

REFERENCES
Abeles SR, Pride DT. 2014.Molecular bases and role of viruses in the human micro-

biome. Journal of Molecular Biology 426(23):3892–3906
DOI 10.1016/j.jmb.2014.07.002.

Adriaenssens EM, Kramer R, Van GoethemMW,Makhalanyane TP, Hogg I, Cowan
DA. 2017. Environmental drivers of viral community composition in Antarctic soils
identified by viromics.Microbiome 5:Article 83 DOI 10.1186/s40168-017-0301-7.

Amgarten D, Braga LPP, Da Silva AM, Setubal JC. 2018.MARVEL, a tool for prediction
of bacteriophage sequences in metagenomic bins. Frontiers in Genetics 9:Article 304
DOI 10.3389/fgene.2018.00304.

Aziz RK, Bartels D, Best AA, DeJonghM, Disz T, Edwards RA, Formsma K, Gerdes
S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek
RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C,
Stevens R, Vassieva O, Vonstein V,Wilke A, Zagnitko O. 2008. The RAST
server: rapid annotations using subsystems technology. BMC Genomics 9:75
DOI 10.1186/1471-2164-9-75.

Aziz RK, Breitbart M, Edwards RA. 2010. Transposases are the most abundant, most
ubiquitous genes in nature. Nucleic Acids Research 38:4207–4217
DOI 10.1093/nar/gkq140.

Aziz RK, Dwivedi B, Breitbart M, Edwards RA. 2011. Phage Eco-Locator: a web tool
for visualization and analysis of phage genomes in metagenomic data sets. BMC
Bioinformatics 12:A9 DOI 10.1186/1471-2105-12-S7-A9.

Bankevich A, Nurk S, Antipov D, Gurevich AA, DvorkinM, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler
G, AlekseyevMA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. Journal of Computational Biology: A Journal
of Computational Molecular Cell Biology 19:455–477 DOI 10.1089/cmb.2012.0021.

Barr JJ. 2017. A bacteriophages journey through the human body. Immunological Reviews
279:106–122 DOI 10.1111/imr.12565.

Bellas CM, Anesio AM, Barker G. 2015. Analysis of virus genomes from glacial envi-
ronments reveals novel virus groups with unusual host interactions. Frontiers in
Microbiology 6:656 DOI 10.3389/fmicb.2015.00656.

BrazeltonWJ, Baross JA. 2009. Abundant transposases encoded by the metagenome of a
hydrothermal chimney biofilm. The ISME Journal 3:1420–1424
DOI 10.1038/ismej.2009.79.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 14/21

https://peerj.com
https://github.com/thatzopoulos/virMine
http://dx.doi.org/10.7717/peerj.6695#supplemental-information
http://dx.doi.org/10.7717/peerj.6695#supplemental-information
http://dx.doi.org/10.1016/j.jmb.2014.07.002
http://dx.doi.org/10.1186/s40168-017-0301-7
http://dx.doi.org/10.3389/fgene.2018.00304
http://dx.doi.org/10.1186/1471-2164-9-75
http://dx.doi.org/10.1093/nar/gkq140
http://dx.doi.org/10.1186/1471-2105-12-S7-A9
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1111/imr.12565
http://dx.doi.org/10.3389/fmicb.2015.00656
http://dx.doi.org/10.1038/ismej.2009.79
http://dx.doi.org/10.7717/peerj.6695


Breitbart M, Bonnain C, Malki K, Sawaya NA. 2018. Phage puppet masters of the
marine microbial realm. Nature Microbiology 3:754–766
DOI 10.1038/s41564-018-0166-y.

Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM,Mead D, Azam F, Rohwer
F. 2002. Genomic analysis of uncultured marine viral communities. Proceedings of
the National Academy of Sciences of the United States of America 99:14250–14255
DOI 10.1073/pnas.202488399.

Bruder K, Malki K, Cooper A, Sible E, Shapiro JW,Watkins SC, Putonti C. 2016.
Freshwater metaviromics and bacteriophages: a current assessment of the state of
the art in relation to bioinformatic challenges. Evolutionary Bioinformatics Online
12:25–33 DOI 10.4137/EBO.S38549.

Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, Chaffron S,
Cruaud C, De Vargas C, Gasol JM, Gorsky G, Gregory AC, Guidi L, Hingamp P,
Iudicone D, Not F, Ogata H, Pesant S, Poulos BT, Schwenck SM, Speich S, Dimier
C, Kandels-Lewis S, Picheral M, Searson S, Tara Oceans Coordinators, Bork P,
Bowler C, Sunagawa S,Wincker P, Karsenti E, SullivanMB. 2015. Ocean plankton.
Patterns and ecological drivers of ocean viral communities. Science 348(6237):Article
1261498 DOI 10.1126/science.1261498.

Brum JR, SullivanMB. 2015. Rising to the challenge: accelerated pace of discov-
ery transforms marine virology. Nature Reviews Microbiology 13:147–159
DOI 10.1038/nrmicro3404.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421
DOI 10.1186/1471-2105-10-421.

Chirico N, Vianelli A, Belshaw R. 2010.Why genes overlap in viruses. Proceedings of the
Royal Society B: Biological Sciences 277:3809–3817 DOI 10.1098/rspb.2010.1052.

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck
T, Kauff F, Wilczynski B, De HoonMJL. 2009. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics
25:1422–1423 DOI 10.1093/bioinformatics/btp163.

Conceição Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, DeboutteW, Yinda
CK, Lavigne R, Maes P, Van Ranst M, Heylen E, Matthijnssens J. 2015.Mod-
ular approach to customise sample preparation procedures for viral metage-
nomics: a reproducible protocol for virome analysis. Scientific Reports 5:16532
DOI 10.1038/srep16532.

Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard
CPD, Dutilh BE, Thompson FL. 2017.Marine viruses discovered via metagenomics
shed light on viral strategies throughout the oceans. Nature Communications
8:Article 15955 DOI 10.1038/ncomms15955.

Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved micro-
bial gene identification with GLIMMER. Nucleic Acids Research 27:4636–4641
DOI 10.1093/nar/27.23.4636.

Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, Barr JJ, Speth DR,
Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA. 2014. A highly

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 15/21

https://peerj.com
http://dx.doi.org/10.1038/s41564-018-0166-y
http://dx.doi.org/10.1073/pnas.202488399
http://dx.doi.org/10.4137/EBO.S38549
http://dx.doi.org/10.1126/science.1261498
http://dx.doi.org/10.1038/nrmicro3404
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1098/rspb.2010.1052
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1038/srep16532
http://dx.doi.org/10.1038/ncomms15955
http://dx.doi.org/10.1093/nar/27.23.4636
http://dx.doi.org/10.7717/peerj.6695


abundant bacteriophage discovered in the unknown sequences of human faecal
metagenomes. Nature Communications 5:Article 4498 DOI 10.1038/ncomms5498.

Dutilh BE, Reyes A, Hall RJ, Whiteson KL. 2017. Editorial: virus discovery by
metagenomics: the (Im)possibilities. Frontiers in Microbiology 8:Article 1710
DOI 10.3389/fmicb.2017.01710.

Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, RobesonM, Edwards
RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB. 2007.Metagenomic
and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea,
fungi, and viruses in soil. Applied and Environmental Microbiology 73:7059–7066
DOI 10.1128/AEM.00358-07.

GalperinMY, Makarova KS,Wolf YI, Koonin EV. 2015. Expanded microbial genome
coverage and improved protein family annotation in the COG database. Nucleic
Acids Research 43:D261–D269 DOI 10.1093/nar/gku1223.

Garretto A, Thomas-White K,Wolfe AJ, Putonti C. 2018. Detecting viral genomes in
the female urinary microbiome. The Journal of General Virology 99:1141–1146
DOI 10.1099/jgv.0.001097.

Garza DR, Dutilh BE. 2015. From cultured to uncultured genome sequences: metage-
nomics and modeling microbial ecosystems. Cellular and Molecular Life Sciences
72:4287–4308 DOI 10.1007/s00018-015-2004-1.

Ghai R, MehrshadM,Mizuno CM, Rodriguez-Valera F. 2017.Metagenomic recovery
of phage genomes of uncultured freshwater actinobacteria. The ISME Journal
11:304–308 DOI 10.1038/ismej.2016.110.

Hannigan GD,Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot
S, Bushman FD, Grice EA. 2015. The human skin double-stranded DNA virome:
topographical and temporal diversity, genetic enrichment, and dynamic associations
with the host microbiome.mBio 6:e01578–01515 DOI 10.1128/mBio.01578-15.

Hatfull GF. 2008. Bacteriophage genomics. Current Opinion in Microbiology 11:447–453
DOI 10.1016/j.mib.2008.09.004.

Hatzopoulos T,Watkins SC, Putonti C. 2016. PhagePhisher: a pipeline for the dis-
covery of covert viral sequences in complex genomic datasets.Microbial Genomics
2:e000053 DOI 10.1099/mgen.0.000053.

Hayes S, Mahony J, Nauta A, Van Sinderen D. 2017.Metagenomic approaches
to assess bacteriophages in various environmental niches. Viruses 9:127
DOI 10.3390/v9060127.

Ho T, Tzanetakis IE. 2014. Development of a virus detection and discovery pipeline
using next generation sequencing. Virology 471–473:54–60
DOI 10.1016/j.virol.2014.09.019.

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield
CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM,
Amundson R, Thomas BC, Banfield JF. 2016. A new view of the tree of life. Nature
Microbiology 1:Article 16048 DOI 10.1038/nmicrobiol.2016.48.

Hurwitz BL, Ponsero A, Thornton J, U’Ren JM. 2018. Phage hunters: computa-
tional strategies for finding phages in large-scale ’omics datasets. Virus Research
244:110–115 DOI 10.1016/j.virusres.2017.10.019.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 16/21

https://peerj.com
http://dx.doi.org/10.1038/ncomms5498
http://dx.doi.org/10.3389/fmicb.2017.01710
http://dx.doi.org/10.1128/AEM.00358-07
http://dx.doi.org/10.1093/nar/gku1223
http://dx.doi.org/10.1099/jgv.0.001097
http://dx.doi.org/10.1007/s00018-015-2004-1
http://dx.doi.org/10.1038/ismej.2016.110
http://dx.doi.org/10.1128/mBio.01578-15
http://dx.doi.org/10.1016/j.mib.2008.09.004
http://dx.doi.org/10.1099/mgen.0.000053
http://dx.doi.org/10.3390/v9060127
http://dx.doi.org/10.1016/j.virol.2014.09.019
http://dx.doi.org/10.1038/nmicrobiol.2016.48
http://dx.doi.org/10.1016/j.virusres.2017.10.019
http://dx.doi.org/10.7717/peerj.6695


Hurwitz BL, SullivanMB. 2013. The Pacific Ocean virome (POV): a marine viral
metagenomic dataset and associated protein clusters for quantitative viral ecology.
PLOS ONE 8(2):e57355 DOI 10.1371/journal.pone.0057355.

InskeepWP, Jay ZJ, HerrgardMJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE,
De Jennings MR, Boyd ES, Spear JR, Roberto FF. 2013. Phylogenetic and func-
tional analysis of metagenome sequence from high-temperature archaeal habitats
demonstrate linkages between metabolic potential and geochemistry. Frontiers in
Microbiology 4:Article 95 DOI 10.3389/fmicb.2013.00095.

Jurtz VI, Villarroel J, Lund O, Voldby LarsenM, NielsenM. 2016.MetaPhinder-
Identifying bacteriophage sequences in metagenomic data sets. PLOS ONE
11(9):e0163111 DOI 10.1371/journal.pone.0163111.

Keen EC, Dantas G. 2018. Close encounters of three kinds: bacteriophages, com-
mensal bacteria, and host immunity. Trends in Microbiology 26:943–954
DOI 10.1016/j.tim.2018.05.009.

Labonté JM, Suttle CA. 2013. Previously unknown and highly divergent ssDNA viruses
populate the oceans. The ISME Journal 7:2169–2177 DOI 10.1038/ismej.2013.110.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9:357–359 DOI 10.1038/nmeth.1923.

Lewandowska DW, Zagordi O, Geissberger F-D, Kufner V, Schmutz S, Böni J, Metzner
KJ, Trkola A, Huber M. 2017. Optimization and validation of sample preparation
for metagenomic sequencing of viruses in clinical samples.Microbiome 5:Article 94
DOI 10.1186/s40168-017-0317-z.

Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam T-
W. 2016a.MEGAHIT v.10: a fast and scalable metagenome assembler driven
by advanced methodologies and community practices.Methods 102:3–11
DOI 10.1016/j.ymeth.2016.02.020.

Li Y,Wang H, Nie K, Zhang C, Zhang Y,Wang J, Niu P, Ma X. 2016b. VIP: an integrated
pipeline for metagenomics of virus identification and discovery. Scientific Reports
6:23774 DOI 10.1038/srep23774.

López-Bueno A, Rastrojo A, Peiró R, Arenas M, Alcamí A. 2015. Ecological connectivity
shapes quasispecies structure of RNA viruses in an Antarctic lake.Molecular Ecology
24:4812–4825 DOI 10.1111/mec.13321.

López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcamí A. 2009.High
diversity of the viral community from an Antarctic lake. Science 326(5954):858–861
DOI 10.1126/science.1179287.

McNair K, Aziz RK, Pusch GD, Overbeek R, Dutilh BE, Edwards R. 2018. Phage
genome annotation using the RAST pipeline.Methods in Molecular Biology
1681:231–238 DOI 10.1007/978-1-4939-7343-9_17.

Merrill BD,Ward AT, Grose JH, Hope S. 2016. Software-based analysis of bacterio-
phage genomes, physical ends, and packaging strategies. BMC Genomics 17:679
DOI 10.1186/s12864-016-3018-2.

Miller-Ensminger T, Garretto A, Brenner J, Thomas-White K, ZambomA,Wolfe AJ,
Putonti C. 2018. Bacteriophages of the urinary microbiome. Journal of Bacteriology
200:e00738-17 DOI 10.1128/JB.00738-17.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 17/21

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0057355
http://dx.doi.org/10.3389/fmicb.2013.00095
http://dx.doi.org/10.1371/journal.pone.0163111
http://dx.doi.org/10.1016/j.tim.2018.05.009
http://dx.doi.org/10.1038/ismej.2013.110
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/s40168-017-0317-z
http://dx.doi.org/10.1016/j.ymeth.2016.02.020
http://dx.doi.org/10.1038/srep23774
http://dx.doi.org/10.1111/mec.13321
http://dx.doi.org/10.1126/science.1179287
http://dx.doi.org/10.1007/978-1-4939-7343-9_17
http://dx.doi.org/10.1186/s12864-016-3018-2
http://dx.doi.org/10.1128/JB.00738-17
http://dx.doi.org/10.7717/peerj.6695


Minot S, Bryson A, Chehoud C,Wu GD, Lewis JD, Bushman FD. 2013. Rapid evolution
of the human gut virome. Proceedings of the National Academy of Sciences of the
United States of America 110:12450–12455 DOI 10.1073/pnas.1300833110.

Minot S, Sinha R, Chen J, Li H, Keilbaugh SA,Wu GD, Lewis JD, Bushman FD. 2011.
The human gut virome: inter-individual variation and dynamic response to diet.
Genome Research 21:1616–1625 DOI 10.1101/gr.122705.111.

Moustafa A, LiW, Singh H, Moncera KJ, TorralbaMG, Yu Y, Manuel O, BiggsW,
Venter JC, Nelson KE, Pieper R, Telenti A. 2018.Microbial metagenome of urinary
tract infection. Scientific Reports 8:4333 DOI 10.1038/s41598-018-22660-8.

Nayfach S, Pollard KS. 2016. Toward accurate and quantitative comparative metage-
nomics. Cell 166:1103–1116 DOI 10.1016/j.cell.2016.08.007.

Nooij S, Schmitz D, Vennema H, Kroneman A, KoopmansMPG. 2018. Overview of
virus metagenomic classification methods and their biological applications. Frontiers
in Microbiology 9:749 DOI 10.3389/fmicb.2018.00749.

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017.metaSPAdes: a new versatile
metagenomic assembler. Genome Research 27:824–834 DOI 10.1101/gr.213959.116.

O’Leary NA,Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Rob-
bertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova
O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T,
Gupta T, Haft D, Hatcher E, HlavinaW, Joardar VS, Kodali VK, LiW,Maglott
D, Masterson P, McGarvey KM,MurphyMR, O’Neill K, Pujar S, Rangwala SH,
Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F,
Tolstoy I, Tully RE, Vatsan AR,Wallin C,Webb D,WuW, LandrumMJ, Kimchi A,
Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. 2016. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expansion, and functional
annotation. Nucleic Acids Research 44:D733–D745 DOI 10.1093/nar/gkv1189.

Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, HuntemannM,
Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC. 2016. Uncovering earth’s
virome. Nature 536:425–430 DOI 10.1038/nature19094.

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28:1420–1428 DOI 10.1093/bioinformatics/bts174.

Pratama AA, Van Elsas JD. 2018. The neglected soil virome—potential role and impact.
Trends in Microbiology 26:649–662 DOI 10.1016/j.tim.2017.12.004.

Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C,White RA, Loomer P,
Armitage GC, Relman DA. 2012. Evidence of a robust resident bacteriophage
population revealed through analysis of the human salivary virome. The ISME
Journal 6:915–926 DOI 10.1038/ismej.2011.169.

Qin J, Li R, Raes J, ArumugamM, Burgdorf KS, Manichanh C, Nielsen T, Pons N,
Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H,
Zheng H, Xie Y, Tap J, Lepage P, BertalanM, Batto J-M, Hansen T, Le Paslier D,
Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K,
Zhu H, Yu C, Li S, JianM, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H,Wang J,

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 18/21

https://peerj.com
http://dx.doi.org/10.1073/pnas.1300833110
http://dx.doi.org/10.1101/gr.122705.111
http://dx.doi.org/10.1038/s41598-018-22660-8
http://dx.doi.org/10.1016/j.cell.2016.08.007
http://dx.doi.org/10.3389/fmicb.2018.00749
http://dx.doi.org/10.1101/gr.213959.116
http://dx.doi.org/10.1093/nar/gkv1189
http://dx.doi.org/10.1038/nature19094
http://dx.doi.org/10.1093/bioinformatics/bts174
http://dx.doi.org/10.1016/j.tim.2017.12.004
http://dx.doi.org/10.1038/ismej.2011.169
http://dx.doi.org/10.7717/peerj.6695


Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach
J, MetaHIT Consortium, Bork P, Ehrlich SD,Wang J. 2010. A human gut micro-
bial gene catalogue established by metagenomic sequencing. Nature 464:59–65
DOI 10.1038/nature08821.

Rani A, Ranjan R, McGee HS, Metwally A, Hajjiri Z, Brennan DC, Finn PW,
Perkins DL. 2016. A diverse virome in kidney transplant patients contains
multiple viral subtypes with distinct polymorphisms. Scientific Reports 6:33327
DOI 10.1038/srep33327.

Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. 2017. VirFinder: a novel k-mer based
tool for identifying viral sequences from assembled metagenomic data.Microbiome
5:Article 69 DOI 10.1186/s40168-017-0283-5.

Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. 2010.
Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature
466:334–338 DOI 10.1038/nature09199.

Richter DC, Ott F, Auch AF, Schmid R, Huson DH. 2008.MetaSim—a sequencing
simulator for genomics and metagenomics. PLOS ONE 3(10):e3373
DOI 10.1371/journal.pone.0003373.

Rihtman B, Meaden S, Clokie MRJ, Koskella B, Millard AD. 2016. Assessing illumina
technology for the high-throughput sequencing of bacteriophage genomes. PeerJ
4:e2055 DOI 10.7717/peerj.2055.

Rosario K, Schenck RO, Harbeitner RC, Lawler SN, Breitbart M. 2015. Novel
circular single-stranded DNA viruses identified in marine invertebrates reveal
high sequence diversity and consistent predicted intrinsic disorder patterns
within putative structural proteins. Frontiers in Microbiology 6:Article 696
DOI 10.3389/fmicb.2015.00696.

Rose R, Constantinides B, Tapinos A, Robertson DL, Prosperi M. 2016. Chal-
lenges in the analysis of viral metagenomes. Virus Evolution 2:Article vew022
DOI 10.1093/ve/vew022.

Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn
JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork
P, Breitbart M, Cochrane GR, Daly RA, Desnues C, DuhaimeMB, Emerson JB,
Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN,
Labonté JM, Lee K-B, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata
H, Páez-Espino D, Petit M-A, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F,
Rosario K, Schriml L, Schulz F, Steward GF, SullivanMB, Sunagawa S, Suttle
CA, Temperton B, Tringe SG, Thurber RV,Webster NS,Whiteson KL,Wilhelm
SW,Wommack KE,Woyke T,Wrighton KC, Yilmaz P, Yoshida T, YoungMJ,
Yutin N, Allen LZ, Kyrpides NC, Eloe-Fadrosh EA. 2018.Minimum information
about an uncultivated virus genome (MIUViG). Nature Biotechnology 37:29–37
DOI 10.1038/nbt.4306.

Roux S, Enault F, Hurwitz BL, SullivanMB. 2015. VirSorter: mining viral signal from
microbial genomic data. PeerJ 3:e985 DOI 10.7717/peerj.985.

Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-
Ngando T, Debroas D. 2012. Assessing the diversity and specificity of two

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 19/21

https://peerj.com
http://dx.doi.org/10.1038/nature08821
http://dx.doi.org/10.1038/srep33327
http://dx.doi.org/10.1186/s40168-017-0283-5
http://dx.doi.org/10.1038/nature09199
http://dx.doi.org/10.1371/journal.pone.0003373
http://dx.doi.org/10.7717/peerj.2055
http://dx.doi.org/10.3389/fmicb.2015.00696
http://dx.doi.org/10.1093/ve/vew022
http://dx.doi.org/10.1038/nbt.4306
http://dx.doi.org/10.7717/peerj.985
http://dx.doi.org/10.7717/peerj.6695


freshwater viral communities through metagenomics. PLOS ONE 7(3):e33641
DOI 10.1371/journal.pone.0033641.

Roux S, Tournayre J, Mahul A, Debroas D, Enault F. 2014.Metavir 2: new tools for viral
metagenome comparison and assembled virome analysis. BMC Bioinformatics 15:76
DOI 10.1186/1471-2105-15-76.

Sangwan N, Xia F, Gilbert JA. 2016. Recovering complete and draft population genomes
from metagenome datasets.Microbiome 4:Article 8 DOI 10.1186/s40168-016-0154-5.

Santiago-Rodriguez TM, LyM, Bonilla N, Pride DT. 2015. The human urine virome
in association with urinary tract infections. Frontiers in Microbiology 6:Article 14
DOI 10.3389/fmicb.2015.00014.

Sharon I, Banfield JF. 2013.Microbiology. Genomes from metagenomics. Science
342(6162):1057–1058 DOI 10.1126/science.1247023.

Sible E, Cooper A, Malki K, Bruder K,Watkins SC, Fofanov Y, Putonti C. 2015. Survey
of viral populations within Lake Michigan nearshore waters at four Chicago area
beaches. Data in Brief 5:9–12 DOI 10.1016/j.dib.2015.08.001.

Simmonds P, AdamsMJ, BenkőM, Breitbart M, Brister JR, Carstens EB, Davison AJ,
Delwart E, Gorbalenya AE, Harrach B, Hull R, King AMQ, Koonin EV, Krupovic
M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, RoossinckMJ, Sabanadzovic S,
SullivanMB, Suttle CA, Tesh RB, Van der Vlugt RA, Varsani A, Zerbini FM. 2017.
Virus taxonomy in the age of metagenomics: consensus statement. Nature Reviews
Microbiology 15:161–168 DOI 10.1038/nrmicro.2016.177.

Skvortsov T, De Leeuwe C, Quinn JP, McGrath JW, Allen CCR, McElarney Y,Watson
C, Arkhipova K, Lavigne R, Kulakov LA. 2016.Metagenomic characterisation of the
viral community of Lough Neagh, the largest freshwater lake in Ireland. PLOS ONE
11(2):e0150361 DOI 10.1371/journal.pone.0150361.

Smits SL, Bodewes R, Ruiz-Gonzalez A, BaumgärtnerW, KoopmansMP, Osterhaus
ADME, Schürch AC. 2014. Assembly of viral genomes from metagenomes. Frontiers
in Microbiology 5:Article 714 DOI 10.3389/fmicb.2014.00714.

Smits SL, Bodewes R, Ruiz-González A, BaumgärtnerW, KoopmansMP, Osterhaus
ADME, Schürch AC. 2015. Recovering full-length viral genomes from metagenomes.
Frontiers in Microbiology 6:Article 1069 DOI 10.3389/fmicb.2015.01069.

Stachler E, Kelty C, SivaganesanM, Li X, Bibby K, Shanks OC. 2017. Quantitative
CrAssphage PCR assays for human fecal pollution measurement. Environmental
Science & Technology 51:9146–9154 DOI 10.1021/acs.est.7b02703.

Thannesberger J, Hellinger H-J, Klymiuk I, Kastner M-T, Rieder FJJ, Schneider
M, Fister S, Lion T, Kosulin K, Laengle J, BergmannM, Rattei T, Steininger C.
2017. Viruses comprise an extensive pool of mobile genetic elements in eukaryote
cell cultures and human clinical samples. The FASEB Journal 31:1987–2000
DOI 10.1096/fj.201601168R.

Tithi SS, Aylward FO, Jensen RV, Zhang L. 2018. FastViromeExplorer: a pipeline for
virus and phage identification and abundance profiling in metagenomics data. PeerJ
6:e4227 DOI 10.7717/peerj.4227.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 20/21

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0033641
http://dx.doi.org/10.1186/1471-2105-15-76
http://dx.doi.org/10.1186/s40168-016-0154-5
http://dx.doi.org/10.3389/fmicb.2015.00014
http://dx.doi.org/10.1126/science.1247023
http://dx.doi.org/10.1016/j.dib.2015.08.001
http://dx.doi.org/10.1038/nrmicro.2016.177
http://dx.doi.org/10.1371/journal.pone.0150361
http://dx.doi.org/10.3389/fmicb.2014.00714
http://dx.doi.org/10.3389/fmicb.2015.01069
http://dx.doi.org/10.1021/acs.est.7b02703
http://dx.doi.org/10.1096/fj.201601168R
http://dx.doi.org/10.7717/peerj.4227
http://dx.doi.org/10.7717/peerj.6695


Vigil-Stenman T, Ininbergs K, Bergman B, EkmanM. 2017.High abundance and
expression of transposases in bacteria from the Baltic Sea. The ISME Journal
11:2611–2623 DOI 10.1038/ismej.2017.114.

Voorhies AA, Eisenlord SD, Marcus DN, DuhaimeMB, Biddanda BA, Cavalcoli JD,
Dick GJ. 2016. Ecological and genetic interactions between cyanobacteria and viruses
in a low-oxygen mat community inferred through metagenomics and metatranscrip-
tomics. Environmental Microbiology 18:358–371 DOI 10.1111/1462-2920.12756.

Wan Y, Renner DW, Albert I, Szpara ML. 2015. VirAmp: a galaxy-based viral genome
assembly pipeline. GigaScience 4:Article 19 DOI 10.1186/s13742-015-0060-y.

Watkins SC, Kuehnle N, Ruggeri CA, Malki K, Bruder K, Elayyan J, Damisch K,
Vahora N, O’Malley P, Ruggles-Sage B, Romer Z, Putonti C. 2016. Assessment
of a metaviromic dataset generated from nearshore Lake Michigan.Marine and
Freshwater Research 67:Article 1700 DOI 10.1071/MF15172.

Watkins SC, Sible E, Putonti C. 2018. Pseudomonas PB1-like phages: whole genomes
from metagenomes offer insight into an abundant group of bacteriophages. Viruses
10:331 DOI 10.3390/v10060331.

Wommack KE, Bhavsar J, Polson SW, Chen J, DumasM, Srinivasiah S, Furman
M, Jamindar S, Nasko DJ. 2012. VIROME: a standard operating procedure for
analysis of viral metagenome sequences. Standards in Genomic Sciences 6:427–439
DOI 10.4056/sigs.2945050.

Yamashita A, Sekizuka T, KurodaM. 2016. VirusTAP: viral genome-targeted assembly
pipeline. Frontiers in Microbiology 7:Article 32 DOI 10.3389/fmicb.2016.00032.

Yooseph S, Sutton G, Rusch DB, Halpern AL,Williamson SJ, Remington K, Eisen
JA, Heidelberg KB, Manning G, LiW, Jaroszewski L, Cieplak P, Miller CS, Li H,
Mashiyama ST, JoachimiakMP, Van Belle C, Chandonia J-M, Soergel DA, Zhai
Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A,
Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC. 2007. The
Sorcerer II global ocean sampling expedition: expanding the universe of protein
families. PLOS Biology 5(3):e16 DOI 10.1371/journal.pbio.0050016.

Zablocki O, Van Zyl L, Adriaenssens EM, Rubagotti E, Tuffin M, Cary SC, Cowan
D. 2014.High-level diversity of tailed phages, eukaryote-associated viruses, and
virophage-like elements in the metaviromes of antarctic soils. Applied and Environ-
mental Microbiology 80:6888–6897 DOI 10.1128/AEM.01525-14.

Zeigler Allen L, McCrow JP, Ininbergs K, Dupont CL, Badger JH, Hoffman JM,
EkmanM, Allen AE, Bergman B, Venter JC. 2017. The Baltic Sea virome: diversity
and transcriptional activity of DNA and RNA viruses. Systems 2:e00125–16
DOI 10.1128/mSystems.00125-16.

ZhangW, Zhou J, Liu T, Yu Y, Pan Y, Yan S,Wang Y. 2015. Four novel algal virus
genomes discovered from Yellowstone Lake metagenomes. Scientific Reports 5:15131
DOI 10.1038/srep15131.

Zhao G,Wu G, Lim ES, Droit L, Krishnamurthy S, Barouch DH, Virgin HW,Wang
D. 2017. VirusSeeker, a computational pipeline for virus discovery and virome
composition analysis. Virology 503:21–30 DOI 10.1016/j.virol.2017.01.005.

Garretto et al. (2019), PeerJ, DOI 10.7717/peerj.6695 21/21

https://peerj.com
http://dx.doi.org/10.1038/ismej.2017.114
http://dx.doi.org/10.1111/1462-2920.12756
http://dx.doi.org/10.1186/s13742-015-0060-y
http://dx.doi.org/10.1071/MF15172
http://dx.doi.org/10.3390/v10060331
http://dx.doi.org/10.4056/sigs.2945050
http://dx.doi.org/10.3389/fmicb.2016.00032
http://dx.doi.org/10.1371/journal.pbio.0050016
http://dx.doi.org/10.1128/AEM.01525-14
http://dx.doi.org/10.1128/mSystems.00125-16
http://dx.doi.org/10.1038/srep15131
http://dx.doi.org/10.1016/j.virol.2017.01.005
http://dx.doi.org/10.7717/peerj.6695

