10,509 research outputs found

    Dynamical and statistical explanations of observed occurrence rates of rogue waves

    Get PDF
    Extreme surface waves occur in the tail of the probability distribution. Their occurrence rate can be displayed effectively by plotting ln(–ln <i>P</i>), where <i>P</i> is the probability of the wave or crest height exceeding a particular value, against the logarithm of that value. A Weibull distribution of the exceedance probability, as proposed in a standard model, then becomes a straight line. Earlier North Sea data from an oil platform suggest a curved plot, with a higher occurrence rate of extreme wave and crest heights than predicted by the standard model. The curvature is not accounted for by second order corrections, non-stationarity, or Benjamin-Feir instability, though all of these do lead to an increase in the exceedance probability. Simulations for deep water waves suggest that, if the waves are steep, the curvature may be explained by including up to fourth order Stokes corrections. Finally, the use of extreme value theory in fitting exceedance probabilities is shown to be inappropriate, as its application requires that not just <i>N</i>, but also ln<i>N</i>, be large, where <i>N</i> is the number of waves in a data block. This is unlikely to be adequately satisfied

    Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean

    Full text link
    Wave turbulence formalism for long internal waves in a stratified fluid is developed, based on a natural Hamiltonian description. A kinetic equation appropriate for the description of spectral energy transfer is derived, and its self-similar stationary solution corresponding to a direct cascade of energy toward the short scales is found. This solution is very close to the high wavenumber limit of the Garrett-Munk spectrum of long internal waves in the ocean. In fact, a small modification of the Garrett-Munk formalism includes a spectrum consistent with the one predicted by wave turbulence.Comment: 4 pages latex fil

    Design guidelines for assessing and controlling spacecraft charging effects

    Get PDF
    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined

    Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    Get PDF
    pre-printWe describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC) captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size

    New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant

    Get PDF
    The gravitational lens 0957+561 is modeled utilizing recent observations of the galaxy and the cluster as well as previous VLBI radio data which have been re-analyzed recently. The galaxy is modeled by a power-law elliptical mass density with a small core while the cluster is modeled by a non-singular power-law sphere as indicated by recent observations. Using all of the current available data, the best-fit model has a reduced chi-squared of approximately 6 where the chi-squared value is dominated by a small portion of the observational constraints used; this value of the reduced chi-squared is similar to that of the recent FGSE best-fit model by Barkana et al. However, the derived value of the Hubble constant is significantly different from the value derived from the FGSE model. We find that the value of the Hubble constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with and without a constraint on the cluster's mass, respectively, where K is the convergence of the cluster at the position of the galaxy and the range for each value is defined by Delta chi-squared = reduced chi-squared. Presently, the best achievable fit for this system is not as good as for PG 1115+080, which also has recently been used to constrain the Hubble constant, and the degeneracy is large. Possibilities for improving the fit and reducing the degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in press (Nov. 1st issue

    A controlled experiment for the empirical evaluation of safety analysis techniques for safety-critical software

    Get PDF
    Context: Today's safety critical systems are increasingly reliant on software. Software becomes responsible for most of the critical functions of systems. Many different safety analysis techniques have been developed to identify hazards of systems. FTA and FMEA are most commonly used by safety analysts. Recently, STPA has been proposed with the goal to better cope with complex systems including software. Objective: This research aimed at comparing quantitatively these three safety analysis techniques with regard to their effectiveness, applicability, understandability, ease of use and efficiency in identifying software safety requirements at the system level. Method: We conducted a controlled experiment with 21 master and bachelor students applying these three techniques to three safety-critical systems: train door control, anti-lock braking and traffic collision and avoidance. Results: The results showed that there is no statistically significant difference between these techniques in terms of applicability, understandability and ease of use, but a significant difference in terms of effectiveness and efficiency is obtained. Conclusion: We conclude that STPA seems to be an effective method to identify software safety requirements at the system level. In particular, STPA addresses more different software safety requirements than the traditional techniques FTA and FMEA, but STPA needs more time to carry out by safety analysts with little or no prior experience.Comment: 10 pages, 1 figure in Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering (EASE '15). ACM, 201

    Collaborating with Academic Affairs to Cultivate Environments that Support Student Integrity

    Get PDF
    Integrity development has been recognized as a common outcome at many colleges and universities (Association of American Colleges & Universities, 2012; Chickering & Reisser, 1993; Dugan & Komives, 2007; Higher Education Research Institute, 1996). Thus, it is important to create academic and student affairs collaborations that promote the development of students’ integrity and values clarification. In this article, we briefly discuss existing and new integrity research that informs how practitioners and administrators can structure environments supportive of students’ value clarification and congruence with their actions on campus. We use student Honor Codes/Codes of Conduct as an example source of collaboration on campus

    Chandra Observations of the Gravitationally Lensed System 2016+112

    Get PDF
    An observation of the gravitationally lensed system 2016+112 with the Chandra X-ray Observatory has resolved a mystery regarding the proposed presence of a dark matter object in the lens plane of this system. The Chandra ACIS observation has clearly detected the lensed images of 2016+112 with positions in good agreement with those reported in the optical and also detects 13 additional X-ray sources within a radius of 3.5 arcmin. Previous X-ray observations in the direction of 2016+112 with the ROSAT HRI and ASCA SIS have interpreted the X-ray data as arising from extended emission from a dark cluster. However, the present Chandra observation can account for all the X-ray emission as originating from the lensed images and additional point X-ray sources in the field. Thus cluster parameters based on previous X-ray observations are unreliable. We estimate an upper limit on the mass-to-light ratio within a radius of 800 h_(50)^(-1) kpc of M/L_(V) < 190 h_(50) (M/L_(V))_Sun. The lensed object is quite unusual, with reported narrow emission lines in the optical that suggest it may be a type-2 quasar (Yamada et. al. 1999). Our modeling of the X-ray spectrum of the lensed object implies that the column density of an intrinsic absorber must lie between 3 and 85 x 10^22 cm^-2 (3 sigma confidence level). The 2-10 keV luminosity of the lensed object, corrected for the lens magnification effect and using the above range of intrinsic absorption, is 3 x 10^43 - 1.4 x 10^44 erg/s.Comment: 9 pages, includes 2 figures, Accepted for publication in ApJ
    • 

    corecore