160 research outputs found

    Microbes, Microbiota, and Colon Cancer

    Get PDF
    Colorectal cancer (CRC) presents a considerable disease burden worldwide. The human colon is also an anatomical location with the largest number of microbes. It is natural, therefore, to anticipate a role for microbes, particularly bacteria, in colorectal carcinogenesis. The increasing accessibility of microbial meta’omics is fueling a surge in our understanding of the role that microbes and the microbiota play in CRC. In this review, we will discuss recent insights into contributions of the microbiota to CRC and explore conceptual frameworks for evaluating the role of microbes in cancer causation. We also highlight new findings on candidate CRC-potentiating species and current knowledge gaps. Finally, we explore the roles of microbial metabolism as it relates to bile acids, xenobiotics, and diet in the etiology and therapeutics of CRC

    The Gut Microbiota and Mucosal T Cells

    Get PDF
    It is intuitive that immune cells in the gut may require microbiota-derived cues for their differentiation. The proximity between host and microbe in the intestine would seemingly necessitate co-adaptation. However, it has been challenging to determine the members and features of the gut microbiota that influence immune system development and function. The recent identification of immunomodulatory members of the commensal microbiota is providing insight into the dependence of select, intestinal immune cell subsets on specific microbial species. In this review, we focus on the gut microbiota's influence on the development and function of mucosal T cells subsets, specifically intraepithelial lymphocytes and lamina propria CD4 T cells

    Metagenomic biomarker discovery and explanation

    Get PDF
    This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.National Institute of Dental and Craniofacial Research (U.S.) (grant DE017106)National Institutes of Health (U.S.) (NIH grant AI078942)Burroughs Wellcome FundNational Institutes of Health (U.S.) (NIH 1R01HG005969

    Long-term use of antibiotics and risk of colorectal adenoma

    Get PDF
    Objective—Recent evidence suggests that antibiotic use, which alters the gut microbiome, is associated with an increased risk of colorectal cancer. However, the association between antibiotic use and risk of colorectal adenoma, the precursor for the majority of colorectal cancers, has not been investigated. Design—We prospectively evaluated the association between antibiotic use at age 20–39 and 40–59 (assessed in 2004) and recent antibiotic use (assessed in 2008) with risk of subsequent colorectal adenoma among 16,642 women aged ≄60 enrolled in the Nurses’ Health Study who underwent at least one colonoscopy through 2010. We used multivariate logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results—We documented 1,195 cases of adenoma. Increasing duration of antibiotic use at age 20–39 (Ptrend=0.002) and 40–59 (Ptrend=0.001) was significantly associated with an increased risk of colorectal adenoma. Compared to non-users, women who used antibiotics for ≄2 months between age 20–39 had a multivariable OR of 1.36 (95% CI: 1.03–1.79). Women who used ≄2 months of antibiotics between age 40–59 had a multivariable OR of 1.69 (95% CI: 1.24–2.31). The associations were similar for low-risk vs. high-risk adenomas (size ≄1 cm, or with tubulovillous/villous histology, or ≄3 detected lesions), but appeared modestly stronger for proximal compared with distal adenomas. In contrast, recent antibiotic use within the past 4 years was not associated with risk of adenoma (Ptrend=0.44). Conclusions—Long-term antibiotic use in early to middle adulthood was associated with increased risk of colorectal adenoma

    Relating the metatranscriptome and metagenome of the human gut

    Get PDF
    Although the composition of the human microbiome is now wellstudied, the microbiota’s \u3e8 million genes and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. We conducted what is, to our knowledge, one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (\u3c5%) displaying between-method variation. Next, we investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut, but with minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation. The results thus detail relationships between community genomic potential and gene expression in the gut, and establish the feasibility of metatranscriptomic investigations in subject-collected and shipped samples

    Developmental Control of Endocytosis in Dendritic Cells by Cdc42

    Get PDF
    AbstractDendritic cells (DCs) developmentally regulate antigen uptake by controlling their endocytic capacity. Immature DCs actively internalize antigen. However, mature DCs are poorly endocytic, functioning instead to present antigens to T cells. We have found that endocytic downregulation reflects a decrease in endocytic activity controlled by Rho family GTPases, especially Cdc42. Blocking Cdc42 function by Toxin B treatment or injection of dominant-negative inhibitors of Cdc42 abrogates endocytosis in immature DCs. In mature DCs, injection of constitutively active Cdc42 or microbial delivery of a Cdc42 nucleotide exchange factor reactivates endocytosis. DCs regulate endogenous levels of Cdc42-GTP with activated Cdc42 detectable only in immature cells. We conclude that DCs developmentally regulate endocytosis at least in part by controlling levels of activated Cdc42

    Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System

    Get PDF
    Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-α production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD
    • 

    corecore