465 research outputs found

    A High Throughput Amenable Arabidopsis-P. aeruginosa System Reveals a Rewired Regulatory Module and the Utility to Identify Potent Anti-Infectives

    Get PDF
    We previously demonstrated that in a metasystem consisting of Arabidopsis seedlings growing in liquid medium (in 96 well plates) even microbes considered to be innocuous such as laboratory strains of E. coli and B. subtilis can cause potent damage to the host. We further posited that such environment-induced adaptations are brought about by ‘system status changes’ (rewiring of pre-existing cellular signaling networks and components) of the host and the microbe, and that prolongation of such a situation could lead to the emergence of pathogenic states in real-life. Here, using this infection model, we show that the master regulator GacA of the human opportunistic pathogen P. aeruginosa (strain PA14) is dispensable for pathogenesis, as evidenced by three independent read-outs. The gene expression profile of the host after infection with wild type PA14 or the gacA mutant are also identical. GacA normally acts upstream of the quorum sensing regulatory circuit (that includes the regulator LasR) that controls a subset of virulence factors. Double mutants in gacA and lasR behave similar to the lasR mutant, as seen by abrogation of a characteristic cell type specific host cell damage caused by PA14 or the gacA mutant. This indicates that a previously unrecognized regulatory mechanism is operative under these conditions upstream of LasR. In addition, the detrimental effect of PA14 on Arabidopsis seedlings is resistant to high concentrations of the aminoglycoside antibiotic gentamicin. These data suggest that the Arabidopsis seedling infection system could be used to identify anti-infectives with potentially novel modes of action

    High-resolution 3D analysis of mouse small-intestinal stroma.

    Get PDF
    Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota

    The gut microbiome: scourge, sentinel or spectator?

    Get PDF
    The gut microbiota consists of trillions of prokaryotes that reside in the intestinal mucosa. This long-established commensalism indicates that these microbes are an integral part of the eukaryotic host. Recent research findings have implicated the dynamics of microbial function in setting thresholds for many physiological parameters. Conversely, it has been convincingly argued that dysbiosis, representing microbial imbalance, may be an important underlying factor that contributes to a variety of diseases, inside and outside the gut. This review discusses the latest findings, including enterotype classification, changes brought on by dysbiosis, gut inflammation, and metabolic mediators in an attempt to underscore the importance of the gut microbiota for human health. A cautiously optimistic idea is taking hold, invoking the gut microbiota as a medium to track, target and treat a plethora of diseases

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    HIV Traffics through a Specialized, Surface-Accessible Intracellular Compartment during trans-Infection of T Cells by Mature Dendritic Cells

    Get PDF
    In vitro, dendritic cells (DCs) bind and transfer intact, infectious HIV to CD4 T cells without first becoming infected, a process known as trans-infection. trans-infection is accomplished by recruitment of HIV and its receptors to the site of DC–T cell contact and transfer of virions at a structure known as the infectious synapse. In this study, we used fluorescent microscopy to track individual HIV particles trafficking in DCs during virus uptake and trans-infection. Mature DCs rapidly concentrated HIV into an apparently intracellular compartment that lacked markers characteristic of early endosomes, lysosomes, or antigen-processing vesicles. Live cell microscopy demonstrated that the HIV-containing compartment was rapidly polarized toward the infectious synapse after contact with a T cell; however, the bulk of the concentrated virus remained in the DCs after T cell engagement. Individual virions were observed emerging from the compartment and fusing with the T cell membrane at the infectious synapse. The compartmentalized HIV, although engulfed by the cytoplasm, was fully accessible to HIV envelope-specific inhibitors and other membrane-impermeable probes that were delivered to the cell surface. These results demonstrate that HIV resides in an invaginated domain within DCs that is both contiguous with the plasma membrane and distinct from endocytic vesicles. We conclude that HIV virions are routed through this specialized compartment, which allows individual particles to be delivered to T cells during trans-infection

    A longitudinal study of tobacco use among American Indian and Alaska Native tribal college students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>American Indians (AI) have the highest smoking rates of any ethnic group in the US (40.8%), followed most closely by African Americans (24.3%) and European Americans (23.6%). AI smokers also have more difficulty quitting smoking compared to other ethnic groups, evidenced by their significantly lower quit ratios, and are among the least successful in maintaining long term abstinence. While health disparities like these have existed for years among AI, the epidemiology of smoking and nicotine dependence has not been optimally described among this underserved population.</p> <p>Our overarching hypothesis is that the susceptibility of AI to cigarette smoking and nicotine dependence and its consequences has both an underlying nicotine metabolism component as well as psychosocial, cultural, and environment causes. We are well-positioned to explore this issue for the first time in this population. Our objective is to establish a cohort of AI tribal college/university students to determine the predictors of smoking initiation (non-use to experimentation), progression (experimentation to established use), and cessation (established use to cessation). Much of what is known about the process of smoking initiation and progression comes from quantitative studies with non-Native populations. Information related to smoking use among AI tribal college/university (TCU) students is entirely unknown and critically needs further investigation. This study will be the first of its kind among AI college students who are at the highest risk among all ethnic groups for tobacco dependence.</p> <p>Methods/design</p> <p>First year students at Haskell Indian Nations University in Kansas will be recruited over four consecutive years and will be surveyed annually and repeatedly through year 5 of the study. We will use both longitudinal quantitative surveys and qualitative focus group methods to examine key measures and determinants of initiation and use among this high risk group.</p

    Synchronized cycles of bacterial lysis for in vivo delivery

    Get PDF
    The pervasive view of bacteria as strictly pathogenic has given way to an ppreciation of the widespread prevalence of beneficial microbes within the human body. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug deliver platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.National Institute of General Medical Sciences (U.S.) (GM069811)San Diego Center for Systems Biology (P50 GM085764)National Cancer Institute (U.S.). Swanson Biotechnology Center (Koch Institute Support Grant (P30-CA14051))National Institute of Environmental Health Sciences (Core Center Grant (P30- ES002109))National Institutes of Health (U.S.) (NIH Pathway to Independence Award NIH (K99 CA197649-01))Misrock Postdoctoral fellowshipNational Defense Science and Engineering Graduate (NDSEG) Fellowshi

    Tumor Necrosis Factor α Inhibits Expression of the Iron Regulating Hormone Hepcidin in Murine Models of Innate Colitis

    Get PDF
    Background: Abnormal expression of the liver peptide hormone hepcidin, a key regulator of iron homeostasis, contributes to the pathogenesis of anemia in conditions such as inflammatory bowel disease (IBD). Since little is known about the mechanisms that control hepcidin expression during states of intestinal inflammation, we sought to shed light on this issue using mouse models. Methodology/Principal Findings: Hepcidin expression was evaluated in two types of intestinal inflammation caused by innate immune activation—dextran sulfate sodium (DSS)-induced colitis in wild-type mice and the spontaneous colitis occurring in T-bet/Rag2-deficient (TRUC) mice. The role of tumor necrosis factor (TNF) α\alpha was investigated by in vivo neutralization, and by treatment of a hepatocyte cell line, as well as mice, with the recombinant cytokine. Expression and activation of Smad1, a positive regulator of hepcidin transcription, were assessed during colitis and following administration or neutralization of TNFα\alpha. Hepcidin expression progressively decreased with time during DSS colitis, correlating with changes in systemic iron distribution. TNFα\alpha inhibited hepcidin expression in cultured hepatocytes and non-colitic mice, while TNFα\alpha neutralization during DSS colitis increased it. Similar results were obtained in TRUC mice. These effects involved a TNFα\alpha-dependent decrease in Smad1 protein but not mRNA. Conclusions/Significance: TNFα\alpha inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of Smad1 protein playing an important role in this process. This inhibitory effect of TNFα\alpha may be superseded by other factors in the context of T cell-mediated colitis given that in the latter form of intestinal inflammation hepcidin is usually up-regulated

    The use of common bean (Phaseolus vulgaris ) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp .) infestations in Uganda

    Get PDF
    The bean fly (Ophiomyia spp.) is considered the most economically damaging field insect pest of common beans in Uganda. Despite the use of existing pest management approaches, reported damage has remained high. Forty-eight traditional and improved common bean varieties currently grown in farmers’ fields were evaluated for resistance against bean fly. Data on bean fly incidence, severity and root damage from bean stem maggot were collected. Generalized linear mixed model (GLMM) revealed significant resistance to bean fly in the Ugandan traditional varieties. A popular resistant traditional variety and a popular susceptible commercial variety were selected from the 48 varieties and evaluated in pure and mixed stands. The incidence of bean fly infestation on both varieties in mixtures with different arrangements (systematic random versus rows), and different proportions within each of the two arrangements, was measured and analysed using GLMMs. The proportion of resistant varieties in a mixture and the arrangement type significantly decreased bean fly damage compared to pure stands, with the highest decrease in damage registered in the systematic random mixture with at least 50 % of resistant variety. The highest reduction in root damage, obvious 21 days after planting, was found in systematic random mixtures with at least 50 % of the resistant variety. Small holder farmers in East Africa and elsewhere in the world have local preferences for growing bean varieties in genetic mixtures. These mixtures can be enhanced by the use of resistant varieties in the mixtures to reduce bean fly damage on susceptible popular varieties
    corecore