1,083 research outputs found

    Thermoacoustic refrigeration

    Get PDF
    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented

    Resonant Acoustic Determination of Complex Elastic Moduli

    Get PDF
    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc

    Fiber-optic push-pull sensor systems

    Get PDF
    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems

    Torsionally Resonant Toroidal Thermoacoustic Refrigerator

    Get PDF
    PatentThis invention for the production of high amplitude acoustic standing waves, which can be used for thermo acoustic heat transport purposes, describes the use of a rigid barrier in place of a piston, thereby allowing the suspension of the resonator to be external to the pressurized resonator and allowing an independent choice of motor mechanism, including the use of rotary motors instead of linear motors, while incidently providing a mechanism for circulating external heat transport fluids without requiring additional pumps or heat pipes

    Understanding Acoustics

    Get PDF
    This open access textbook, like Rayleigh’s classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features “Talk Like an Acoustician“ boxes to highlight key terms introduced in the text

    Remotely Readable Fiber Optic Compass

    Get PDF
    PatentA remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts

    Fiber Optic Accelerometer With Centrally Supported Flexural Disk

    Get PDF
    PatentAn accelerometer or seismometer has an elastic disk bearing a mass distributed peripherally around the disk. The disk is supported for flexure and for isolation from mounting strain by a stob centrally through the disk. The accelerometer or seismometer has a pair of flat spirals of optical fiber, each spiral being fixedly attached to a corresponding disk side so that disk flexure lengthens a spiral on one disk side and shortens a spiral on an oppositely facing disk side and so that temperature differences between the spirals are minimized. The pair of spirals are connected as legs of a fiber optic interferometer so that the interferometer provides an output corresponding to the flexure. Several of the disks and asociated pairs of spirals may be coaxially mounted to provide increased sensitivity

    The Spatial, Ionization, and Kinematic Conditions of the z=1.39 Damped Ly-alpha Absorber in Q0957+561 A,B

    Full text link
    We examined the sizes of the absorption clouds in a z=1.3911 damped Ly-alpha absorber (DLA) in the double image lensed quasar Q0957+561 A,B (separation 135 pc at the absorber redshift). Using HIRES/Keck spectra, we studied the MgII 2796,2803 doublet, FeII multiplet, and MgI 2853 transition in absorption. We defined six "clouds" in the system of sightline A and seven clouds in the system of sightline B. An examination of the N(v) profiles, using the apparent optical depth method, reveals no clear physical connection between the clouds in A and those in B. The observed column density ratios of all clouds is log[N(MgI)/N(FeII)] ~ -2 across the full velocity range in both systems and also spatially (in both sightlines). This is a remarkable uniformity not seen in Lyman limit systems. The uniformity of the cloud properties suggests that the multiple clouds are not part of a "halo". Based upon photoionization modeling, we constrain the ionization parameters in the range -6.2 < log(U) < -5.1, where the range brackets known abundance ratio and dust depletion patterns. The inferred cloud properties are densities of 2 < n_H < 20 cm^-3, and line of sight sizes of 1 < D < 25 pc. The masses of the clouds in system A are 10 < M/M_sun < 1000 and in system B are 1 < M/M_sun < 60 for spherical clouds. For planar clouds, the upper limits are 400 M_sun and 160 M_sun for A and B, respectively. We favor a model of the absorber in which the DLA region itself is a single cloud in thiscomplex, which could be a parcel of gas in a galactic ISM. A spherical cloud of ~10 pc would be limited to one of the sightlines (A) and imply a covering factor less than 0.1 for the DLA complex. We infer that the DLA cloud properties are consistent with those of lower density, cold clouds in the Galactic interstellar medium.Comment: Accepted for publication in the Astrophysical Journal; final versio
    • …
    corecore