970 research outputs found

    Adiabatic cavity QED with pairs of atoms: Atomic entanglement and Quantum teleportation

    Full text link
    We study the dynamics of a pair of atoms, resonantly interacting with a single mode cavity, in the situation where the atoms enter the cavity with a time delay between them. Using time dependent coupling functions to represent the spatial profile of the mode, we considered the adiabatic limit of the system. Although the time evolution is mostly adiabatic, energy crossings play an important role in the system dynamics. Following from this, entanglement, and a procedure for cavity state teleportation are considered. We examine the behaviour of the system when we introduce decoherence, a finite detuning, and potential asymmetries in the coupling profiles of the atoms.Comment: 12 pages, 7 figures, To appear in European Physical Journal Special Topic

    Entanglement trapping in a non-stationary structured reservoir

    Get PDF
    We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime. Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure

    The genomic landscape of prostate cancer

    Get PDF
    Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction, and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues

    Entanglement in the adiabatic limit of a two-atom Tavis-Cummings model

    Full text link
    We study the adiabatic limit for the sequential passage of atoms through a high-Q cavity, in the presence of frequency chirps. Despite the fact that the adiabatic approximation might be expected to fail, we were able to show that for proper choice of Stark-pulses this is not the case. Instead, a connection to the resonant limit is established, where the robust creation of entanglement is demonstrated. Recent developments in the fabrication of high-Q cavities allow fidelities for a maximally entangled state up to 97%.Comment: 12 pages, 5 figures, Submitted to Physica Scripta as part of the Proceedings of the 15th CEWQO 200

    Effects of relative phase and interactions on atom-laser outcoupling from a double-well Bose-Einstein condensate: Markovian and non-Markovian dynamics

    Full text link
    We investigate aspects of the dynamics of a continuous atom-laser scheme based on the merging of independently formed atomic condensates. Our theoretical analysis covers the Markovian as well as the non-Markovian operational regimes, and is based on a semiclassical (mean-field) two-mode model. The role of the relative phase between the two condensates and the effect of interatomic interactions on the evolution of the trapped populations and the distribution of outcoupled atoms are discussed.Comment: to appear in J. Phys.

    Time-dependent tunneling of Bose-Einstein condensates

    Get PDF
    The influence of atomic interactions on time-dependent tunneling processes of Bose-Einstein condensates is investigated. In a variety of contexts the relevant condensate dynamics can be described by a Landau-Zener equation modified by the appearance of nonlinear contributions. Based on this equation it is discussed how the interactions modify the tunneling probability. In particular, it is shown that for certain parameter values, due to a nonlinear hysteresis effect, complete adiabatic population transfer is impossible however slowly the resonance is crossed. The results also indicate that the interactions can cause significant increase as well as decrease of tunneling probabilities which should be observable in currently feasible experiments.Comment: 8 pages, 5 figure

    Molecular heat pump for rotational states

    Get PDF
    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems

    Unraveling quantum dissipation in the frequency domain

    Full text link
    We present a quantum Monte Carlo method for solving the evolution of an open quantum system. In our approach, the density operator evolution is unraveled in the frequency domain. Significant advantages of this approach arise when the frequency of each dissipative event conveys information about the state of the system.Comment: 4 pages, 4 Postscript figures, uses RevTe

    Quantum state engineering via unitary transformations

    Get PDF
    We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field. The proposition is based upon the fact that a unitary transformation for the generation of number states has been already found. The general unitary transformation here obtained, would allow the use of nonlinear interactions for the production of pure states. We discuss the applicability of this method by giving examples of generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the interaction of trapped ions with two laser fields.Comment: 5 pages in RevTeX, no figures, accepted for publication in Phys. Rev.

    Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a continuous atom laser based on the merging of independently formed atomic condensates. In a first attempt to understand the dynamics of the system, we consider two independent elongated Bose-Einstein condensates which approach each other and focus on intermediate inter-trap distances so that a two-mode model is well justified. In the framework of a mean-field theory, we discuss the quasi steady-state population of the traps as well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.
    corecore