1 research outputs found

    End-to-end tests of the TuMag instrument for the SUNRISE III mission

    Get PDF
    Ground-based and airborne instrumentation for astronomy IX (2022), Montreal, jul 17-22, 2022.--Proceedings of SPIE - The International Society for Optical Engineering vol. 12184 Article number 121842FSUNRISE III mission is a one-meter aperture telescope onboard a balloon within NASA Long Duration Balloon Program. Three post-focus instruments are used for studying the Sun's dynamics and magnetism, among which the Tunable Magnetograph (TuMag) is a tunable imaging spectropolarimeter. TuMag is a diffraction-limited imager, a high sensitivity polarimeter (< 10(-3)), and a high-resolution spectrometer (Delta lambda similar to 65 m angstrom). It will be able to study solar magnetic fields at high spatial resolution (similar to 100 km on the solar surface). It will make images of the solar surface magnetic field after measuring the state of polarization of light within three selected spectral lines: the Fe I lines at 525.02 nm and 525.06 nm, and the Mg I b2 line at 517.27 nm. It will be sensitive to the solar vector magnetic fields and line-of-sight velocities, in the photospheric and chromospheric layers. TuMag will be the first solar magnetograph onboard an aerospace platform with the capability of tuning the solar line to be observed. In this paper the TuMag end-to-end tests carried out during the verification phase are described. These tests are performed to characterize and calibrate the instrument. Specifically, they determine the polarimetric and spectroscopic performances of the instrument as well as the image quality. The availability of a singular facility, an ISO6 clean room with a coelostat on the building roof, allowed the use of solar light during the verification campaign. This was key to a complete instrument verification due to the unique spectroscopic and polarimetric characteristics of solar light.The authors would like to thank Ministerio de Ciencia e Innovacion from the Spanish government for the support of this research via the grant Space Solar Physics RTI2018-096886-B-C5 and "Centro de Excelencia Severo Ochoa" grant SEV-2017-0709.Peer reviewe
    corecore