4,946 research outputs found
Nonequilibrium fluctuations in a resistor
In small systems where relevant energies are comparable to thermal agitation,
fluctuations are of the order of average values. In systems in thermodynamical
equilibrium, the variance of these fluctuations can be related to the
dissipation constant in the system, exploiting the Fluctuation-Dissipation
Theorem (FDT). In non-equilibrium steady systems, Fluctuations Theorems (FT)
additionally describe symmetry properties of the probability density functions
(PDFs) of the fluctuations of injected and dissipated energies. We
experimentally probe a model system: an electrical dipole driven out of
equilibrium by a small constant current , and show that FT are
experimentally accessible and valid. Furthermore, we stress that FT can be used
to measure the dissipated power in the system by just
studying the PDFs symmetries.Comment: Juillet 200
Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: Influence on the mechanical properties
The authors would like to thank PSA for funding this research and providing some of the materials used in this study. We also would like to thank R. GlĂ©nat, P. Soria, E. Dandeu, A. Grand- montagne and A. Dubruc for their help in the preparation and the optical and mechanical characterizations of the samples presented in this study.Multilayer coextrusion was used to disperse Carbon Nanotubes (CNT) in polypropylene (PP). The dilution of commercially available masterbatches using a twin-screw extruder was first applied to produce several formulations, which were then mixed with PP using a multilayer coextrusion device to obtain films or pellets with CNT concentrations between 0.1 and 1%wt. The influence of the specific mechanical energy (SME) during the dilution step, of the addition of a compatibilizer, and of the multilayer tool on the CNT dispersion within the matrix was highlighted. The effect of the dispersion on the thermomechanical properties of the resulting materials was studied. We showed notably that films containing 0.2%wt CNT, 1%wt of PPgAm, prepared at high SME presented a Youngâs modulus increase of 25e30% without significant decrease in the elongation at break. These results, using low amounts of CNT and industrially available devices, may show a new path for producing nanocomposites
Work fluctuation theorems for harmonic oscillators
The work fluctuations of an oscillator in contact with a thermostat and
driven out of equilibrium by an external force are studied experimentally and
theoretically within the context of Fluctuation Theorems (FTs). The oscillator
dynamics is modeled by a second order Langevin equation. Both the transient and
stationary state fluctuation theorems hold and the finite time corrections are
very different from those of a first order Langevin equation. The periodic
forcing of the oscillator is also studied; it presents new and unexpected short
time convergences. Analytical expressions are given in all cases
Robust seismic velocity change estimation using ambient noise recordings
We consider the problem of seismic velocity change estimation using ambient
noise recordings. Motivated by [23] we study how the velocity change estimation
is affected by seasonal fluctuations in the noise sources. More precisely, we
consider a numerical model and introduce spatio-temporal seasonal fluctuations
in the noise sources. We show that indeed, as pointed out in [23], the
stretching method is affected by these fluctuations and produces misleading
apparent velocity variations which reduce dramatically the signal to noise
ratio of the method. We also show that these apparent velocity variations can
be eliminated by an adequate normalization of the cross-correlation functions.
Theoretically we expect our approach to work as long as the seasonal
fluctuations in the noise sources are uniform, an assumption which holds for
closely located seismic stations. We illustrate with numerical simulations and
real measurements that the proposed normalization significantly improves the
accuracy of the velocity change estimation
Transmission of matter wave solitons through nonlinear traps and barriers
The transmissions of matter wave solitons through linear and nonlinear
inhomogeneities induced by the spatial variations of the trap and the
scattering length in Bose-Einstein condensates are investigated. New phenomena,
such as the enhanced transmission of a soliton through a linear trap by a
modulation of the scattering length, are exhibited. The theory is based on the
perturbed Inverse Scattering Transform for solitons, and we show that radiation
effects are important. Numerical simulations of the Gross-Pitaevskii equation
confirm the theoretical predictions.Comment: 6 pages, 4 figure
A two-way interactive broadband satellite architecture to break the digital divide barrier
September 24-26, 2007, Turin, Ital
TV-Centric technologies to provide remote areas with two-way satellite broadband access
October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces
- âŠ