22 research outputs found

    Key Role of Polyphosphoinositides in Dynamics of Fusogenic Nuclear Membrane Vesicles

    Get PDF
    The role of phosphoinositides has been thoroughly described in many signalling and membrane trafficking events but their function as modulators of membrane structure and dynamics in membrane fusion has not been investigated. We have reconstructed models that mimic the composition of nuclear envelope precursor membranes with naturally elevated amounts of phosphoinositides. These fusogenic membranes (membrane vesicle 1(MV1) and nuclear envelope remnants (NER) are critical for the assembly of the nuclear envelope. Phospholipids, cholesterol, and polyphosphoinositides, with polyunsaturated fatty acid chains that were identified in the natural nuclear membranes by lipid mass spectrometry, have been used to reconstruct complex model membranes mimicking nuclear envelope precursor membranes. Structural and dynamic events occurring in the membrane core and at the membrane surface were monitored by solid-state deuterium and phosphorus NMR. “MV1-like” (PC∶PI∶PIP∶PIP2, 30∶20∶18∶12, mol%) membranes that exhibited high levels of PtdIns, PtdInsP and PtdInsP2 had an unusually fluid membrane core (up to 20% increase, compared to membranes with low amounts of phosphoinositides to mimic the endoplasmic reticulum). “NER-like” (PC∶CH∶PI∶PIP∶PIP2, 28∶42∶16∶7∶7, mol%) membranes containing high amounts of both cholesterol and phosphoinositides exhibited liquid-ordered phase properties, but with markedly lower rigidity (10–15% decrease). Phosphoinositides are the first lipids reported to counterbalance the ordering effect of cholesterol. At the membrane surface, phosphoinositides control the orientation dynamics of other lipids in the model membranes, while remaining unchanged themselves. This is an important finding as it provides unprecedented mechanistic insight into the role of phosphoinositides in membrane dynamics. Biological implications of our findings and a model describing the roles of fusogenic membrane vesicles are proposed

    Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    Get PDF
    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism

    Nuclear envelope remnants: fluid membranes enriched in STEROLS and polyphosphoinositides

    No full text
    Background The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm. Methodology/Principal Findings Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei. Conclusions/Significance We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly

    Hepatitis B subvirus particles display both a fluid bilayer membrane and a strong resistance to freeze drying: a study by solid‐state NMR, light scattering, and cryo‐electron microscopy/tomography

    No full text
    Hepatitis B surface antigen (HBsAg) subvirus particles produced from yeast share immunological determinants with mature viruses, which enable the use of HBsAg as a potent antigen for human vaccination. Because the intimate structure of such pseudoviral particles is still a matter of debate, we investigated the robustness of the external barrier and its structure and dynamics using the noninvasive solid- state NMR technique. This barrier is made of 60% proteins and 40% lipids. Phospholipids represent 83% of all lipids, and chain unsaturation is of 72%. Dynamics was reported by embedding small amounts of deuterium chain-labeled unsaturated phospholipid into the external barrier of entire subviral particles, while controlling particle integrity by cryoelectron microscopy, tomography, and light scattering. Variable preparation modes were used, from mild incubation of small unila-mellar vesicles to very stringent incorporation with freeze-drying. A lipid bilayer structure of 4- to 5-nm thickness was evidenced with a higher rigidity than that of synthetic phospholipid vesicles, but nonetheless reflecting a fluid membrane (50 –52% of maximum rigidity) in agreement with the elevated unsaturation content. The HBsAg particles of 20- to 24-nm diameter were surprisingly found resistant to lyophilization, in such a way that trapped water inside particles could not be removed. These dual properties bring more insight into the mode of action of native subviral particles and their recombinant counterparts used in vaccines.</p

    Nuclear envelope remnants are enriched in polyphosphoinositides.

    No full text
    <p>Lipid analysis of nuclear envelope remnants. (A) Lipids extracted from <i>L. pictus</i> demembranated sperm cells were separated by HPLC on a normal phase column and characterized by ESI-MS/MS using the precursor ion scans of sphingomyelin (SM), phosphatidylglycerol (PtdGly), phosphatidylethanolamine (PtdEth), phosphatidic acid (PtdAc), phosphatidylserine (PtdSer), phosphatidylcholine (PtdCho), phosphatidylinositol (PtdIns) or using the multiple ion scans of phosphatidylinositolphosphate (PtdInsP), phosphatidylinositolbisphosphate (PtdInsP<sub>2</sub>) and phosphatidylinositoltrisphosphate (PtdInsP<sub>3</sub>). Phospholipids were quantified using 12∶0/12∶0 (SM, PtdGly, PtdEth, PtdAc, PtdSer and PtdCho) or 16∶0/16∶0 (PtdIns, PtdInsP, PtdInsP<sub>2</sub> and PtdInsP<sub>3</sub>) internal standards. Data expressed as mean±SEM (n = 3). (B) Alkyl-acyl versus diacyl phosphoinositides species distribution in nuclear envelope remnants. Mole percentages of diacyl species (green) and alkyl-acyl species (blue) were quantified from the multiple ion scans for each phosphoinositide class: PtdInsP, PtdInsP<sub>2</sub> and PtdInsP<sub>3</sub>. 38% of PtdInsP, 15% of PtdInsP<sub>2</sub> and 49% of PtdInsP<sub>3</sub> are diacyl species. The PtdInsP<sub>2</sub> is predominantly alkyl-acyl phosphoinositide. Data expressed as mean±SEM (n = 3).</p

    Nuclear envelope remnant phospholipid species are mainly polyunsaturated and arachidonyl.

    No full text
    <p>PtdCho, PtdEth and PtdIns species extracted from <i>L. pictus</i> 0.1% nuclei were characterized using the precursor ion scans of +184m/z, −196m/z and −241m/z respectively. Both alkyl-acyl (denoted by ‘a’) and diacyl species were mostly arachidonyl on their sn<sub>2</sub> positions. Lipid species are listed by descending order of abundance.</p

    Poly-phosphoinositides in 0.1% nuclei and whole sperm are enriched in the acrosomal and centriolar fossae.

    No full text
    <p><i>L. pictus</i> 0.1% nuclei (left) and whole live sperm (right) were incubated with the Texas Red labelled MARCKS peptide and visualised by fluorescence microscopy. The punctate staining of the acrosomal and centriolar fossae is typical of the majority of nuclei observed in experiments on two independent sperm and 0.1% nuclei preparations.</p
    corecore