6,330 research outputs found
Conductivity in Jurkat cell suspension after ultrashort electric pulsing
Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing
Revealing design complexity: Lessons from the Open University
Design is an inherently complex activity. Design thinking is cognitively complex and design practice is contextually complex. This has implications for university-level design education which has traditionally displayed clear distinctions between the full-time and part-time undergraduate sectors, particularly in their teaching and learning strategies. However, a number of pressures and trends are evident which suggest that these two sectors are moving closer together. One of the drivers in this phenomenon is the need for students to be exposed to realistic levels of design complexity. This paper examines complexity in design and draws some significant parallels between modern design practice in general and the production of a new undergraduate course at the Open University. Both are used to illuminate design complexity. The paper suggests that some of the tools, techniques and approaches of part-time, undergraduate, distance design education might usefully be exploited in more traditional, full-time course models
Nanosecond electric pulses penetrate the nucleus and enhance speckle formation
Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA–protein complexes
Corporate Social Responsibility: Considerations for Sport Management in the Age of Neoliberalism
International Journal of Exercise Science 10(6): 900-914, 2017. For financial reasons, in efforts to maintain legitimacy, and in response to social pressures, sport organizations increasingly engage with corporate social responsibility (CSR). However, with the rise of global neoliberalism, the logic of CSR can be problematic. In this essay, we provide a brief overview, critique, and reconstruction of CSR in the sport industry. Specifically, we call into question three popularized forms of CSR: (1) diversity, inclusion, and diversity management, (2) environmental responsibility, and (3) health and physical activity-based initiatives. In a neoliberal context, CSR in sport provides, at best, a limited response to social issues. At their worst, CSR initiatives may be socially irresponsible programs that further engender inequalities and inequities while a neoliberal logic serves to rationalize and augment sport organizations’ place(s) in society. We discuss these issues and challenge the field of sport management to further consider how we may demonstrate a more legitimate social concern in the 21st centur
Recommended from our members
Motherhood, Moral Authority and the Charismatic Matriarch in the Aftermath of Lethal Violence
Images of maternal suffering are an evocative and powerful means of communication in a world where the private grief of victims has increasingly become subject to commodification and public consumption. This article looks at the influence of bereaved mothers as symbols of respect, peace and dignity in the aftermath of violence, and as a result their persuasive presence in family activism. Drawing upon two case studies, this article explores the importance of victims’ stories in public life and, in particular, the presence of the charismatic matriarch in creating communities of solidarity, raising awareness of harms that have previously gone unheard and prompting policy change. It considers the ‘canonical’ story of the mother in public life and concludes by arguing that more attention should be paid to victims’ stories and their influence on policy-making, politics and eventually in becoming public grievances
Space-charge-limited current density for nonplanar diodes with monoenergetic emission using Lie-point symmetries
Understanding space-charge limited current density (SCLCD) is fundamentally
and practically important for characterizing many high-power and high-current
vacuum devices. Despite this, no analytic equations for SCLCD with nonzero
monoenergetic initial velocity have been derived for nonplanar diodes from
first principles. Obtaining analytic equations for SCLCD for nonplanar
geometries is often complicated by the nonlinearity of the problem and over
constrained boundary conditions. In this letter, we use the canonical
coordinates obtained by identifying Lie-point symmetries to linearize the
governing differential equations to derive SCLCD for any orthogonal diode.
Using this method, we derive exact analytic equations for SCLCD with a
monoenergetic injection velocity for one-dimensional cylindrical, spherical,
tip-to-tip (t-t), and tip-to-plate (t-p) diodes. We specifically demonstrate
that the correction factor from zero initial velocity to monoenergetic emission
depends only on the initial kinetic and electric potential energies and not on
the diode geometry and that SCLCD is universal when plotted as a function of
the canonical gap size. We also show that SCLCD for a t-p diode is a factor of
four larger than a t-t diode independent of injection velocity. The results
reduce to previously derived results for zero initial velocity using
variational calculus and conformal mapping.Comment: 18 pages, 3 figure
Electron Trajectories and Critical Current in a Two-Dimensional Planar Magnetically Insulated Crossed-Field Gap
The critical current in a one-dimensional (1D) crossed-field gap is defined by the transition from a cycloidal flow to a near-Brillouin (nB) state characterized by electron flow orthogonal to both the electric and magnetic fields and uniform virtual cathode formation. Motivated by recent studies on space-charge-limited current in non-magnetic diodes, we assess the meaning of critical current in a magentically insulated two-dimensional (2D) planar crossed-field geometry. Particle-in-cell (PIC) simulations demonstrate that binary behavior between a laminar and turbulent state does not occur in 2D because the virtual cathode is nonuniform. Rather than a distinct nB state above the critical current as in 1D, there is an increase in Brillouin contribution with the presence of cycloidal components and noise even at low currents. To evaluate the electron flows in a 2D crossed-field gap in the absence of a binary transition, we developed two metrics to assess the Brillouin and cycloidal components in a 2D planar crossed-field gap for various emission widths and injection current densities by comparing the phase space plots from PIC simulations to analytical solutions for cycloidal and Brillouin flow. For a smaller emission width, less Brillouin contribution occurs for a given injection current, while maximizing the cycloidal noise requires a larger injection current. Once the virtual cathode starts to form and expand with increasing injection current, the cycloidal noise reaches its peak and then decreases while the Brillouin components become significant and increase
Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites
We report isotopic data for a total of 96 presolar oxide grains found in
residues of several unequilibrated ordinary chondrite meteorites. Identified
grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This
work greatly increases the presolar hibonite database, and is the first report
of presolar Ti oxide. O-isotopic compositions of the grains span previously
observed ranges and indicate an origin in red giant and asymptotic giant branch
(AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in
the parent AGB stars is required to explain isotopic compositions of many
grains. Potassium-41 enrichments in hibonite grains are attributable to in situ
decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good
agreement with model predictions for low-mass AGB star envelopes, provided that
ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of
the hibonite grains reflect primarily the initial compositions of the parent
stars and are generally consistent with expectations for Galactic chemical
evolution, but require some local interstellar chemical inhomogeneity. Very
high 17O/16O or 25Mg/24Mg ratios suggest an origin for some grains in binary
star systems where mass transfer from an evolved companion has altered the
parent star compositions. A supernova origin for the hitherto enigmatic
18O-rich Group 4 grains is strongly supported by multi-element isotopic data
for two grains. The Group 4 data are consistent with an origin in a single
supernova in which variable amounts of material from the deep 16O-rich interior
mixed with a unique end-member mixture of the outer layers. The Ti oxide grains
primarily formed in low-mass AGB stars. They are smaller and rarer than
presolar Al2O3, reflecting the lower abundance of Ti than Al in AGB envelopes.Comment: Accepted for publication in ApJ; 47 pages, 13 figure
S-, P- and D-wave resonances in positronium-sodium and positronium-potassium scattering
Scattering of positronium (Ps) by sodium and potassium atoms has been
investigated employing a three-Ps-state coupled-channel model with Ps(1s,2s,2p)
states using a time-reversal-symmetric regularized electron-exchange model
potential fitted to reproduce accurate theoretical results for PsNa and PsK
binding energies. We find a narrow S-wave singlet resonance at 4.58 eV of width
0.002 eV in the Ps-Na system and at 4.77 eV of width 0.003 eV in the Ps-K
system. Singlet P-wave resonances in both systems are found at 5.07 eV of width
0.3 eV. Singlet D-wave structures are found at 5.3 eV in both systems. We also
report results for elastic and Ps-excitation cross sections for Ps scattering
by Na and K.Comment: 9 pages, 5 figures, Accepted in Journal of Physics
How uncertainty enables non-classical dynamics
The uncertainty principle limits quantum states such that when one observable
takes predictable values there must be some other mutually unbiased observables
which take uniformly random values. We show that this restrictive condition
plays a positive role as the enabler of non-classical dynamics in an
interferometer. First we note that instantaneous action at a distance between
different paths of an interferometer should not be possible. We show that for
general probabilistic theories this heavily curtails the non-classical
dynamics. We prove that there is a trade-off with the uncertainty principle,
that allows theories to evade this restriction. On one extreme, non-classical
theories with maximal certainty have their non-classical dynamics absolutely
restricted to only the identity operation. On the other extreme, quantum theory
minimises certainty in return for maximal non-classical dynamics.Comment: 4 pages + 4 page technical supplement, 2 figure
- …