357 research outputs found

    The diffuse component of the cosmic X-radiation

    Get PDF
    The A-2 experiment on HEAO-1 is specifically developed to study the diffuse radiation of the entire X-ray sky over a wide bandwidth, covering both the soft X-ray emission from nearby regions of the galaxy and the isotropic hard X-radiation indicative of remote extragalactic origins. A partial conclusion from the experiment is that a hot thermal plasma, on a scale comparable to that of the universe, may be the principal source of hard X-radiation characteristic of the extragalactic sky. Some key features of this background were defined

    Stimulated brillouin scattering in liquids

    Get PDF
    Stimulated Brillouin scattering of intense laser light with build-up of coherent hypersonic waves in liquid

    Optical frequency waveguide and transmission system Patent

    Get PDF
    Optical communication system with gas filled waveguide for laser beam transmissio

    Laser machining apparatus Patent

    Get PDF
    Laser machining device with dielectric functioning as beam waveguide for mechanical and medical application

    Optical frequency waveguide Patent

    Get PDF
    Self-generating optical frequency waveguid

    X-ray Spectroscopy of QSOs with Broad Ultraviolet Absorption Lines

    Get PDF
    For the population of QSOs with broad ultraviolet absorption lines, we are just beginning to accumulate X-ray observations with enough counts for spectral analysis at CCD resolution. From a sample of eight QSOs [including four Broad Absorption Line (BAL) QSOs and three mini-BAL QSOs] with ASCA or Chandra spectra with more than 200 counts, general patterns are emerging. Their power-law X-ray continua are typical of normal QSOs with Gamma~2.0, and the signatures of a significant column density [N_H~(0.1-4)x10^{23} cm^{-2}] of intrinsic, absorbing gas are clear. Correcting the X-ray spectra for intrinsic absorption recovers a normal ultraviolet-to-X-ray flux ratio, indicating that the spectral energy distributions of this population are not inherently anomalous. In addition, a large fraction of our sample shows significant evidence for complexity in the absorption. The subset of BAL QSOs with broad MgII absorption apparently suffers from Compton-thick absorption completely obscuring the direct continuum in the 2-10 keV X-ray band, complicating any measurement of their intrinsic X-ray spectral shapes.Comment: 9 pages, 6 figures, uses AASTeX. Accepted to the Astrophysical Journa

    Chandra Observations of the Gravitationally Lensed System 2016+112

    Get PDF
    An observation of the gravitationally lensed system 2016+112 with the Chandra X-ray Observatory has resolved a mystery regarding the proposed presence of a dark matter object in the lens plane of this system. The Chandra ACIS observation has clearly detected the lensed images of 2016+112 with positions in good agreement with those reported in the optical and also detects 13 additional X-ray sources within a radius of 3.5 arcmin. Previous X-ray observations in the direction of 2016+112 with the ROSAT HRI and ASCA SIS have interpreted the X-ray data as arising from extended emission from a dark cluster. However, the present Chandra observation can account for all the X-ray emission as originating from the lensed images and additional point X-ray sources in the field. Thus cluster parameters based on previous X-ray observations are unreliable. We estimate an upper limit on the mass-to-light ratio within a radius of 800 h_(50)^(-1) kpc of M/L_(V) < 190 h_(50) (M/L_(V))_Sun. The lensed object is quite unusual, with reported narrow emission lines in the optical that suggest it may be a type-2 quasar (Yamada et. al. 1999). Our modeling of the X-ray spectrum of the lensed object implies that the column density of an intrinsic absorber must lie between 3 and 85 x 10^22 cm^-2 (3 sigma confidence level). The 2-10 keV luminosity of the lensed object, corrected for the lens magnification effect and using the above range of intrinsic absorption, is 3 x 10^43 - 1.4 x 10^44 erg/s.Comment: 9 pages, includes 2 figures, Accepted for publication in ApJ
    corecore