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ABSTRACT 

* 
The A-2 experiment 00 HEAO-1 is t h e  f i r s t  s p e c i f i c a l l y  developed 

to  study t h e  d i f f u s e  r ad ia t ion  of t h e  entire X-ray sky over a vide bad- 

vidth,  covering both t h e  s o f t  X-ray emission from nearby regions of t h e  

galaxy and the  i so t rop ic  hard X-radiation indicative of remote ext raga lac t ic  

origins. 

plasaa, on a scale comparable t o  t h a t  of t h e  universe,  r a y  be t h e  p r inc ipa l  

source of hard X-radiation characteristic of t h e  ex t raga lac t ic  sky. 

Defining same key f ea tu res  of t h i s  background is a prime goal of t h i s  

experiment, and mrk i n  progress on t h i s  is described. 

A p ic tu re  t h a t  is merging from t h i s  study is that a hot thermal 

Subject Headings: ex t raga lac t ic  sources--X-rays , background--X-ra ys, spec t ra  
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The X-ray sky i s  dominated by an apparently diffuse flux. For 
0 

s o f t  X-rays (i-e. wavelengths t 40 A, photon energies 0.3 keV) the 

anisotropies are most pronounced, associated mainly wi th  nearby regions 

o f  our Milky Way galaxy. For hard X-rays (i.e. wavelengths < 4 A, 
0 

photan energies > 3 keV) the sky background i s  remarkably isotropic, 

indicat ive of extragalactic or ig ins tha t  are extremely remote. The 

HEAO A-2 experiment i s  now performing an all-sky survey over a broad 

bandwidth of photon energies (0.15 - 60 keV) that  spans these tvm 

very di f ferent regimes, thereby providing the kind -f information 

needed for studying both the galact ic and extragalactic components with 

related observations extending well  i n t o  the region of overlap. Two 

groups are collaborating on t h i s  extensive research program. One of 

these i s  our group (see Table l a )  a t  the Goddard Space F l i g h t  Center, 

where the pr incipal  eff *-t i s  concerned with the hard X-ray data. The 

other group involving astronomers at the Cal i fornia I n s t i t u t e  o f  Technology 

and the University of California (see Table lb), headed by G. Garmire 

o f  Caltech, has been most interested i n  soft X-rays and i s  leading the 

HEAO work i n  that  area. I n  t h i s  t a l k  I w i l l  emphasize the hard component 

o f  the di f fuse X-ray background. 

The soft and hard X-ray regimes tend t o  dist inguish galactic from 

extragalactic effects mainly because of the vastly dif ferent thermal 

settings for the astronomical plasmas involved. Within the galaxy, 

supernovae and s t e l l a r  winds contribute t o  a m i l l i o n  o r  so degree hot 

gas that  f i l l s  a substantial f ract ion of the region between stars. The 

presence of this hot gas i s  important f o r  the dynamics of the cooler 

ORIGINAL PAGE IS 
OF POOR QUAISI’Y 



- 3 -  

a) Analysis of Hard X-rays (1.5 - 60 keV) 

-- 6oddard Space F l i gh t  Center: 

R. BeckeF R. Wushotaky- 
E. Boldt S. PravQg 
s. Holt * A. Rose 
L. K. l u r i e n a i  R. Roth2chIld' 
F. Ilarsha)t; J.  Saba 
R. M i l l e r  P. Serleraitsos 

b) Analysis o f  Soft X-rays (0.15 - 3 keV) 

-- Cal i forn ia  I n s t i t u t e  of Technology 
(including Jet  Propulsion Laboratory) : 

P. Agrawal 
F. Cordova 
6. Gannire 
F. L w  

3. Nugent 
6. Riegler 
I .  Tuohy 

-- University of Cal i fornia (Berkeley): 

S. Bonyer 
W. Cash 
P. Charles 
S. Khan 

M. lampton 
S. Lea 
K. Mason 
U. Reichert 

* 
R. Shafer, 
8. Smith 
A. Stottleayer++ 
3. Swank 
A. SzymkotQak 
D. Worrall 

J. Thorstensen 
F. Walter 

** 
+ 
++ 
+++ 

University of Maryland 
National Research Council (resident associate) 
Now a t  University o f  Cal i fornia (San Diego) 
Computer Sciences Corp. 
Now a t  Jet Propulsion Laboratory (Caltech) 



- 4 -  

gas o f  the i n te rs te l l a r  medim, which i s  related t o  the ra te  o f  s ta r  

formation. A great ly improved map of the loca l  d is t r ibu t ion  o f  t h i s  

hot campment i s  now being constructed from t h z  soft X-ray data and w i l l  

be reported elsewhere by 6. Gamire. On a vaster scale, aggregates o f  

galaxies are f i l l e d  w i t h  a more tenuous but much hot ter  gas, so hot (up 

t o  % 10 K) that  the a tam corresponding t o  the l i gh tes t  elements are 

ccmpletely stripped of electrons, leaving essent ia l ly  only the inner- 

shel l  electrons of re la t i ve l y  abundant iron for generating any atomic 

signals, and wberc, elementary electron-proton co l l i s ions  are responsible 

for  most of the hard X-ray emission character ist ic of such a plasma. 

As we shal l  see, the preliminary p ic ture tha t  i s  emerging fm our current 

HMO study o f  the overal l  hard X-ray background i s  that  an even hotter 

thermal plasma, on a scale comparable t o  that  of the universi, may be 

the dominant source. The study of such a hot gas (plasma) could reveal 

new information about the ear ly phases of galaxy and cluster formation, 

and the ear ly  evolution of the universe. 

80 

A pre-HEAO view of the so-called " isotropic" sky background of 

hard X-rays and i t s  re la t ion  t o  the br ightest  discrete objects i n  the 

sky i s  shown i n  Figure 1. The vintage of t h i s  f igure i s  about 1970, 

but the informatim exhibited remained essent ia l ly  a t  t h i s  stage u n t i l  

HEAO. What i s  shown here i s  the spectrum f o r  the energy f lux of X-ray 

photons a t  Earth as would be seen by an omnidirectional (4n) spectrometer. 

The curves labeled "a", "b" and the data points give a representative 

i d e i  o f  our knowledge o f  the isotropic background p r i o r  t o  HEAO. The 

- a curve i s  typ ica l  o f  the power laws obtained with rocket-borne proportional 
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counters below 20  keV; indices fo r  the photon number spectrum were any- 

where i n  the range 1.4 t o  1.7 (e.9. see Boldt  e t  al., 1969, and Gorenstein 

- e t  ,*’ a1 1969). The bal loon (Bleeker and Deerenberg, 1970) and OSO-3 

data (Schwartz, Hudson and Peterson, 1970) were obtainec 

la tors ,  where the high-mergy ef f ic iency i s  much b e t t e r  bu t  where spectral  

resolut ion and extraneous background are more severe problems. The 

apparent spectral  change between the rocket and bal loon r e s u l t s  was also 

suggested by the OSO-3 data, What was missing was proport ional  counter 

data from a s ing le  experiment up through the spectral  change, somewhat 

beyond 20 keV, The HEAO A-2 experiment was developed t o  meet t h i s  need. 

‘:h s c i n t i l -  

Below a few ke\r the overa l l  f l u x  of X-rays a t  the o r b i t  o f  Earth 

i s  always dominated by the Sun. As shown i n  Figure 1, however, the overa l l  

f lux  a t  higher energies i s  dominated by i s o t r g p i c  rad iat ion,  so i s o t r o p i c  

t h a t  i t  must be ext ragalact ic  i n  or ig ins.  Another important source of 

X-ray f lux  i s  Sco X-1 which i s ,  on the average, by fa r  the br igh tes t  

ob ject  i n  the c e l e s t i a l  sky of var iab le sources. Even considering the 

contr ibut ions of a l l  other d iscern ib le  objects i n  the X-ray sky (on an 

average day) the t o t a l  of t he i r  f lux  a r r i v i n g  t o  the v i c i n i t y  o f  the 

so la r  system would f a l l  shor t  of t h a t  shown i n  Figure 1 for  Sco X-1. 

(The Crab Nebula i s  a lso included i n  Figure 1 fo r  comparison since i t  

i s  the br igh tes t  s tab le X-ray source and the standard candle o f  X-ray 

astronomy). That the X-ray sky is dominated by an i s o t r o p i c  f l u x  i s  

p r a c t i c a l l y  unique i n  astronomy, the only other case being the m i l l i m e t e r  

band where the sky i s  dominated by 2.7’K black-body radiat ion.  I n  radio, 

op t ica l  and gamna-ray astronomy the galaxy iccounts for  most o f  the l oca l  

f lux. 



A1 though X-ray astronomy has c e r t a i n l y  f l o u r i s h e d  s i n c e  1970, 

research on the  d i f f u s e  sky, p a r t i c u l a r l y  the  hard component, has been 

r e l a t i v e l y  dorniant. S a t e l l i t e  experiments s ince  1970 such as those on 

IJYURU (SAS l), A r i e l  5 ,  ANS, SAS 3 and OSO-8 have focused ou r  a t t e n t i o n  

on i n d i v i d u a l l y  d i s c e r n i b l e  sources, p a r t i c u l a r l y  compact o b j e c t s  o f  

h i g h  as t rophys i ca l  i n t e r e s t ,  such as neutron s ta rs .  However, t h e r e  was 

a l s o  a p r a c t i c a l  reason f o r  t h i s  r e s t r i c t i o n  d u r i n g  the  i n i t i a l  decade 

o r  so o f  X-ray astronomy w i t h  o r b i t i n g  observator ies.  The reason i s  

t h a t  a l l  X-ray d e t e c t c r s  i n  o r b i t  have a s i g n i f i c a n t  background a r i s i n g  

from o t h e r  than t h e  X-ray sky. Some o f  t h e  extraneous causes a r e  cosmic 

rays  , ambient e l e c t r o n s  , l o c a l l y  generated gama r a y s  and induced r a d i o -  

a c t i v i t y .  And, f o r  d i s c r e t e  source measurements, even t h e  " t r u e "  d i f f u s e  

X-ray sky i s  an undes i rab le  contamination. 

has been t o  make the  d e t e c t o r ' s  f i e l d  o f  view as smal l  as p r a c t i c a l  and 

t o  measure t h e  increase i n  s i g n a l  as the  d e t e c t o r  scans across the d i s c r e t e  

source of i n t e r e s t .  

Hence, t h e  standard approach 

Our s t r a t e g y  w i t h  HEAO A-2 f o r  e x t r a c t i n g  the d i f f use  f l u x  o f  c e l e s t i a l  

X-rays from t h e  o v e r a l l  s i g n a l  i s  o u t l i n e d  i n  Table 2. The main p o i n t s  

a r e  as fo l lows:  

1 )  The most fundamental aspect of a d i f f u s e  f l u x  i s  t h a t  i t  increases 

Hence, we employ two f i e l d s  of view per  de tec tor ;  l i n e a r l y  w i t h  s o l i d  angle. 

one of them i s  always 3' x 3' (FWHM), the  dual one i s  3' x 1': f o r  some 

detec tors  and 3' x 6' f o r  others.  

2 )  Ambient e lec t rons  can be a problem. 

p r o p o r t i o n a l  counters, the main d e t e c t o r  i s  separated from the entrance 

For our  high-energy gas 
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window by a charged p a r t i c l e  ve to  l a y e r  (propane f i l l e d )  r e l a t i v e l y  

t ransparent  t o  hard X-rays. 

s i b l e  and d e f l e c t i o n  magnets a r e  used. 

For  ou r  low energy de tec to rs  t h i s  i s  impos- 

3)  We d e t e c t  X-rays v i a  the  p h o t o e l e c t r i c  e f f e c t ,  which i s  a s t rong  

f u n c t i o n  of energy. To e x p l o i t  t h i s  c h a r a c t e r i s t i c  we have th ree  types 

o f  gas p r o p o r t i o n a l  counters, op t im ized f o r  low, medium and h i g h  energy 

X-rays des ignated LED, MED and HED, respec t i ve l y .  

3 keV) we use propane, f o r  medium energy X-rays (1.5 - 15 keV) we use 

argon and f o r  hard X-rays (3-60 keV) we use xenon. 

For  s o f t  X-rays (0.15- 

4 )  The e l e c x o n s  emerging f rom a p h o t o - e l e c t r i c a l l y  e x c i t e d  atom 

a re  conf ined t o  a smal l  r e g i o n  near t h e  atom; hence we empfoy mult i-anode 

veto t o  remove more pene t ra t i ng  charged p a r t i c l e  events. 

5) F i n a l l y ,  s ince  t h e  scan p e r i o d  of HEAO i nvo l ves  much o f  the  

o r b i t  around the  Ear th  we separate s p a t i a l  and temporal e f f e c t s  w i t h  

some counters  o f f s e t  by o n l y  6' a long the  scan path. 

F igure  2 i s  a photograph o f  a medium energy de tec to r  i n  the  lab. 

The o t h e r  de tec to rs  l ook  about the  same. X-rays en te r  a mechanical 

co; l imator  on top, t rave rse  a t h i n  window and a re  detected i n  a m u l t i -  

anode inul t i - l a y e r  argon gas p r o p o r t i o n a l  chamber. The dual  c o l l i m a t o r  

i s  matched t o  the  i n t e r n a l  m u l t i - c e l l e d  s t r u c t u r e  o f  t he  p r o p o r t i o n a l  

chamber; odd numbered c e l l s  a r e  a l i gned  w i t h  the  3' x 3' c o l l i m a t o r ,  

wh i l e  even numbered c e l l r  a re  a l i gned  w i t h  the  3' x 1 'io c o l l i m a t o r .  

F igure  3 shows the dual  c o l l i m a t o r  i t s e l f  i n  g rea te r  d e t a i l  i n  o rde r  

t o  conve;l how t h i s  scheme has been implemented. 

F igure  4 i s  an a r t i s t ' s  concept ion of what the A-2 experiment 

lo3ks l i k e  as incorpora ted  i n t o  HEAO-1. To g e t  o r ien ted ,  note t h a t  the 
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solar  panels always face the sun. The A-2 experiment i t s e l f  consists 

o f  s i x  proport ional  chambers, two LED's for  low energies, one MED f o r  

midband coverage and three HED's fo r  hard X-rays. 

To get  some idea o f  how t h i s  experiment scans the sky l e t ' s  concentrate 

on any one o f  the s i x  detectors and examine i t s  scan path on the c e l e s t i a l  

sphere. This i s  shown i n  Figure 5. Every h a l f  hour t h i s  dual co l l imator  

detector scans a complete great c i r c l e  on the c e l e s t r i a l  sphere i n  an 

angular band 3' wide. A t  any ins tan t  o f  t ime i t  views an angular region 

- + e along the scan path w i th  the detector h a l f  corresponding t o  the 

large f i e l d  o f  view co l l imat ion  as we l l  as an included angular region 

h a l f  t h i s  s ize  w i t h  the complimentary p o r t i o n  of the detector corresponding 

t o  the small f i e l d  ~f view. 

e c l i p t i c  equator so t h a t  the e n t i r e  sky i s  scanned i n  6 months. 

How does the dual co l l imat ion  scheme work out i n  pract ice? The 

Each day the sp in ax is  moves 1' along the 

i n - o r b i t  perfcrmance of HED #1 r e l a t i v e  t o  t h i s  question i s  exhib i ted 

i n  Figure 6, dhere the effectiveness of the scheme i s  q u i t e  evident. 

The two histograms displayed g ive the observed p o p u l a t i w  o f  samples 

sorted according t o  the t o t a l  accepted X-ray count per telemetry major 

frame (i.e. 40.96s). 

the top histogram for  counts associated w i t h  the 3' x 6' co l l imat ion  

and the bottom fo r  counts associated w i t h  the 3' x 3' col l imat ion.  These 

histograms are based on data accumulated over many scan cycles regardless 

o f  what was i n  the f i e l d  o f  view, be i t  the Earth o r  c e l e s t i a l  sources. 

The histogram f o r  each o f  the f i e l d s  o f  view exh ib i ts  two c l e a r l y  separated 

peaks, the high one a t t r i b u t e d  t o  ex, osures dominated by the sky and 

They are c lass i f ied  only  as regards f i e l d  o f  view, 
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the one w i t h  lower couilts attributed t o  exposures dominated by the Earth. 

If there were no extraneous sources of background the two histcgrams 

would scale as the rat io  of solid angles (i.e. both the Earth 3nd the 

sky represent essentially isotropic sources). 

a relatively weak X-ray source, even i n  the hard X-ray band (% 3-60 keV) 

considered here, and most of the signal when the Earth f i l l s  the f ie ld  

of view arises from background internal to  the detector (e.g. Compton 

collisions of gama rays). More extensive data bear out the quali tative 

indication in Figure 0 t h a t  the internal backgrohnd to be associated 

w i t h  the two f ie lds  of view are equal. Furthermore, a comparison of 

t h e  internal background derived from the two peaks associated w i t h  the 

diffuse sky has been shown to  be the same as that derived from the two 

peaks associated w i t h  the diffuse Earth, b o t h  i n  magni tude  and spectral 

shape. As shown in Figure 6 by a dashed l ine,  the internal background 

f o r  H E D  # l  reprecents an average contamination of ~ ) 1 4 %  for  the large 

f ie ld  of view at12 ~ 2 5 : -  for the small f ie ld  of view, when the ful l  60 

keV energy bandwidth of i i i i :  detector i s  included. 

I n  f a c t ,  the Earth is 

A t  this point we f e l t  ready t o  s t a r t  n u r  analysis of the spectrum 

of the diffuse X-ray background. 

was carried out  as a p i lot  study by F,  Marshall with some key inputs 

from R. Miller. I n  th is  instance, we excluded much of the available 

d a t a  because of  c r i te r ia  such as 1 )  no catalogued source or source region 

in the f ie ld  of view, 

t o  a level of less t h a n  2 x lom3 Crab* a n d ,  of course, 3)  none of 

the kar tn  in the field of view. 

The work I ' l l  be describing on this  

3 )  n o  transient dctivity or new source, down 

To exclude effects of internal background, 

* 
Note t h a t  a "milliCrab" i s  approximately equivalent to  one UHUHU count/s. 
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the pulse height sPectrum t o  be associated w i t h  the diffuse background 

was obtained i n  each detector by simply subtracting the spectrum f o r  

the small f ie ld  of view from the spectrum for  the large f ie ld  of view. 

Then we tested some model spectra of interest  by folding them through 

the calibrated response function o f  the aetector, normalizing t o  the 

total  number of counts and comparing observed counts per channel w i t h  

t h a t  predicted. The response function for  th i s  procedure was verified, 

in orbi t ,  on the Crab Nebula. 

two power-law spectra of interest  (i.e,,, photon number index 1.4 and 

1.7) and the results are shown i n  Figure 7. 

For the diffuse background, we considered 

The quant i ty  plotted i n  Figure 7 i s  the ra t io  of observed t o  pre- 

dicted counts as a func t ion  of observed energy ( i n  keV). 

the decreasing photon f l u x  and detector efficient-y w i t h  energy the s t a t i s t i ca l  

errors increase w i t h  energy. 

t h a n  the symbols used for  the data points bu; become appreciable above 

abou t  4C keV, as rhown by the error bar on the bottom plot i n  the figure. 

From the t o p  plot o f  Figure 7 we see that  the incident spectrum definitely 

f a l l s  off more rapidly than  a 1.4 power-law above about 10 keV. From 

the bottom p l o t ,  we see t h a t  althcugh a 1.7 index power-law might represent 

a better overall f i t  quali tatively,  i t  i s  also clewly not acceptable. 

We then tried spectra corresponding t o  the emissien expected from 

Because of 

Below about 20 keV these errors are smaller 

an optically t h i n  hot isothermal plasma of electrons and protons. 

was tr ied f o r  several temperatures, as shown i n  Figure 8. Here again 

we plot the r a t i o  of observed t o  predicted counts. As i s  evident, kT 

= 20 ke\! i s  much too cool while kT = 75 keV i s  definitely too  ho t .  A t  

This 
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t h i s  stage o f  data a n a l y s i s  we es t imate  t h a t  kT i s  w i t h i n  about 5 keV 

o f  45 keV, 

degrees, and the  spectrum i s  remarkably s t r u c t u r e l e s s ,  a t  l e a s t  below 

about 20 keV. For the  abso lu te  magnitude o f  t he  f l u x ,  we agree q u i t e  

w e l l  w i t h  est imates by D. Schwartz (1975) based ofi a comp i la t i on  of pre- 

HEAO measurenents by va r ious  experiments over d i  f f e r e r i t  p o r t i o n s  of the  

s pec t runi. 

I n  o t h e r  words, t h e  temperature i s  about a h a l f  b i l l i o n  

N o w  l e t ' s  compare t h i s  background spectrum w i t h  the  spec t ra  of 

s p e c i f i c  ex t raqa lac . t i c  ob jec ts .  

c l u s t e r s  of ga lax ies  (McHardy, 1977; Jones and Forman, 1978); the  b r i g h t e s t  

e x t r a g a l a c t i c  X-ray o b j e c t  i n  the  sky i s  t h e  Perseus C lus ter .  

i s  a l s  

Ser lev  ~ S O S ,  R. Mushotzky, B o  Smith and col leagues from ou r  OSO-8 exper i -  

ment. The l i s t  o f  20 such spec t ra  now known (Mushotzky e t  a l .  1978) 

should increase t o  about 60 when we complete the  HEAO a n a l y s i s  o f  c l u s t e r s  

from an a l l - s k y  survey. I n  t h i s  case, t he  t h e r m 1  emissiori  i, charac te r i zed  

by kT = 6.8 keV f o r  t h e  continuum and an r l u i v a l e n t  w i d t h  o f  400 PV f o r  

a l i n e  a t  6.7 keV i n d i c a t i v e  o f  a near cosmic abundance o f  i r o n  i n  col- 

l i s i o n a l  equ i l i o r * i i im  t h i s  temperature. These are  reasonably t y p i c a l  

parameters f o r  X-ray c l u s t e r s .  

than the  o v e r a l l  background, and they  do have s p e c t r a l  s t ruc tu re .  

Most o f  those so f a r  i d e n t i f i e d  a re  

I t ' s  spectrum 

thermal and i s  shown i n  F igu re  9, based on da ta  ob ta ined by P. 

I n  o t h e r  words, they  a r e  much coo le r  

The nex t  most common e x t r a g a l a c t i c  X-ray source i d e n t i f i e d  p r i o r  

t o  HEAO i s  a Sey fer t  galaxy. 

- a l .  1978) we knew the  spectrum of o n l y  one, naaely NGC4151. 

shows another one, ob ta ined f rom our  HEAO experiment by R, MushrtTky, 

Al though the re  are j b o u t  1 4  ( E l v i s  e t  -- 

F igu re  10 
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f o r  an object wi th an in tens i ty  of less than 

Seyfert Nqalaxy X390.3 was i n  a law  state during the acciawrlation of 

these data. The incident spectnn inferred i s  based on a bes t - f i t  porRr 

law o f  n u - i r  index '1.7 and absorption by 5 x 10" atoars CUI-', roughly 

Crab, This extresre 

equivalent i n  magnitude t o  the absorption between here and Our am 

galactic center. In  suwnary, i t ' s  not a thermal spectrum and i t  i s  hiqhly 

absorbed, such as NGC4151. 

As f a r  as other conapact extragalactic sources, there were spectra 

f o r  only two p r i o r  t o  HEAO (i-e,, the quasar X273 and the B l  Lac object 

Markarian 421). Nors that  the A1 and A3 experiments have ident i f ied  another 

BL Lac object (Markarian 501), here i s  another BL Lac spectwn obtained 

from the A2 experiment by R. Mushotzky, shown i n  Figure 11. It i s  a rz- 

markably f l a t  spectrum, much l i k e  that  of Markarian 421 (R, Mushotzky, 

private conrnunication), wi th  a phGton nmber spectral index of 1.1 and 

exhibits no a y  .rent absorption, 

We are now i n  a posit ion LU compare the various major components 

of the extragalactic hard X-ray sky. F i rs t ,  we have the spectrun of 

the diffuse background (i.e.* the spectrum for the composite emission 

of a l l  unresolved sources). For resolved sources we already have a good 

idea of the typical  spectrum t o  be associated wi th  clusters of galaxies. 

As we have j u s t  seen we also have some idea of the highly absorbed spectra 

t o  be associated wi th  re la t i ve l y  compact objects such as Seyferts and 

N-galaxies t o  the very f l a t  unabsorbed spectra t o  be associated BL Lac 

objects such as Markarian 501. For previous surveys such as conducted 

with UHURU and A r i e l  5 we know the i den t i t y  of over 804: of the extragalactic 
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sources resolved and we know how the number of such objects decreases 

with source i n t e n s i t y  over about d decade; that  i s ,  we know something 

about the so-called Log N-Log S cwve f o r  obserbations ir: the 2-10 keV 

band (Murray 1977; Warnick and Pye, 1978). Hence, we have w h a t  we need 

to  construct t h e  spectrum for  t h e  composite f l u x  from almost a l l  ektra- 

galactic sources that could have been resolved prior to HEAO. 

information is  sunnarized i n  Figure 12. 

T h i s  

F i g u r e  I2  shows the spectral characterist ics of t h e  total  flux from 

the extragalactic X-ray sky a s  would be viewed by a n  omnidirectional 

(4:) spectrometer. 

f i t  thennal continuum for  the diffuse bdckground; 

this  corresponds t o  kT 

represents a thermal co2tinuup with kT '?: 6 keV and i r o n  l ine emission 

a t  -* 6.7 keV spread o u t  i n  energy over a bandwidth corresponding to a 

spread i n  redshifts of 0.09 since the most distant cluster w i t h  detected 

l ine emission (Abell 478) has t h a t  redshift 

c . d  "QSO + Si Lac" are very d.pproyi!ltdte i n  sharp since s;:ectra have k e n  

measured fdr only a couple of sources i n  eat+ instance, Llthough the 

absolute 2-10 keV level i s  based on larger samples, especially f o r  

Seyferts. 

we can crudely estimate w h a t  the multiplication fac to r  i s  fo r  getting 

from these flux valuer shown here t o  ones corresponding to the integral 

of a l l  such sources in 'he universe. 

f a c t x  i s  less t h a n  about 5. 

10. 

The curve labeled "unresolved emission" i s  t h e  best 

discussed before, 

45 keV. The curve labeled "clusters of galaxies" 

The curves labeled "Seyferts" 

From the most distant source of each class positively identified 

For clusters of galaxies t h a t  

For Seyferts the factor i s  approximately 

For "QSO + EL Lac" the factcr would be less than 10 i f  we really 
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believed we could ignore evolution f o r  such sources. On t h i s  basis,  

we conclude t h a t  a t  no energy do discrete sources of the type indicated 

contribute more than about a t e n t h  of t h e  unresolved emission spectrum 

shown here, w i t h  c lus te rs  making their major contribution a t  the low 

energy end and Seyfer ts  a t  the high end. 

emission from c lus t e r s  is so pronounced that the resu l t ing  discontinuity 

i n  the unresolved emission a s  observed i n  this experiment would be close 

t o  1%; anything much more than t h i s  would have been detected i n  t h e  limited 

data sample already analyzed. 

In par t icu lar ,  the i ron line 

We are confronted w i t h  the s i tua t ion  that  i t  is extremely d i f f i c u l t ,  

i f  not impossible, to  account f o r  most of the unresolved ex t raga lac t ic  

X-ray sky i n  terms o f  extragalact ic  X-ray objects  like those already 

observed. In f ac t ,  the spectral  shape suggests t h a t  it 's thermal emission 

from a hot plasma a t  an e f fec t ive  temperature of a half-bi l l ion degrees. 

If i t 's a spa t i a l ly  uniform plasma, we can apply the analysis  of Field 

and Perrenod (1977) t o  conclude t h a t  the mass i n  t h i s  plasma is about 

half t ha t  required for  closure of the universe. However, there a r e  

serious problems w i t h  t h i s  picture ,  as pointed out  by these authors 

and others (cf. Bergeron and Gunn 1977). For example, the existence 

of diffuse neutral hydrogen clouds i n  in te rga lac t ic  space indicates  t ha t  

the hot plasma under consideration can not pervade a!l in te rga lac t ic  

space fo r  i f  i t  d i d  these hydrogen clouds could not pers i s t .  One way 

t o  get around t h i s  i s  t o  postulate t ha t  the in te rga lac t ic  plasma i s  clumped. 

A model discussed by Field and Perrenod (1977) has t h i s  matter i n  isothermal 

spheres of a type described by Chandresekhar (1942) many years ago. 
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If one assumes that  the t o t a l  mass i n  such hot clouds i s  less than the 

closure mass, then the number o f  such objects must be less than 2 x 10 

sources. However, upper l i m i t s  on background fluctuations, such as 

obtained by Schwartz e t  al. (1971), Fabian and Sanford (1971) and Shafer 

-- e t  al. (1977), require that  the number o f  discrete sources f o r  the hact- 

ground exceed 2 x 10 objects by a t  least  a factor o f  2. However, these 

analyses were basical ly for point sou; - t s ,  while the hot spheres discussed 

by F ie ld  and Perrenod (1977) could have r a d i i  larger than 100 Mpc and 

present an angular s ize grLater than a degree. That's the s i tuat ion 

as i t  exists now. Defining some key characterist ics o f  t h i s  background 

necessary for solving t h i s  puzzle i s  a major goal o f  our elaborate pro- 

gram of data analysis. Some o f  the topics we are pursuing are l i s t e d  

i n  Table 3, 

5 

5 

I n  br ief ,  the status on these may be sumnarized as follows: 

Topic # I .  F, Marshall i s  leading our work on the spectrum o f  the 

background, The resul ts presented today represent less than 5% of the 

data we hope t o  have from t h i s  mission. 

Topic X2. Research on extragalactic sources with HEAO i s  j u s t  

beginning and you've seen some examples. 

0. Worralt are carrying th i s  forward. 

R. Mushotzky, 8. Smith, and 

Topic #3. For the f i e lds  o f  view employed by t h i s  experiment 

source confusion, even for extragalactic sources, s a problem a t  the 

level of % Crab and becomes very severe below Crab. l e t  we 

h,,J16 l i h e  t o  extend our Spectroscopy f o r  extragalactic sources down 

t o  that  level. To do th is  we ignore source confusion and measure the 

energy spectrum o f  the brightness f luctuations characterist ic o f  the 
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1 .  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

R3EAROI IN lsaoGRESS ON THE UNRESOLVEO HAW) X-RAY SW 

Spectrum of the isotropic (extragalgcticl bac.tground. 

Spect-oscopic canparison with resolved extragalactic sources 
le.q clusters of galaxies, Seyferts). 

S~ecttoscoplc comparison w i t h  unresolved extragalactic sources. 

Multlcolor analysts of fluctuations i n  t h e  extragalactic brightness 
(e.9. for classtf icatic of contributing cosrpMents). 

Auio. wre lat ion analysis of fluctuations In the extragalactic 
ness time. scales of clumpiness). 

ation analysis of variations i n  the extragalactic brightness 
local supergalaxy). 

FTnding the proper frame for the extragalactic background 
k . g .  r'xrmpton-Getting effect). 

Urresolved galactic emission due to Ion luminosity objects. 

Di f fuse galactf: miss ion due to  cosmic ray electrons 

(e+. correlations wi th  the galactic radio backgmuna). 
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extra-galactic sky i n  regions devoid o f  ind iv idual ly  resolvable sources 

and compare this d i rec t l y  with the spectrun o f  the overal l  d i f fuse back- 

ground. A. Stottleatyer and I have made some progress on this, but we 

need t o  analyze an order of magnitude more data t o  r i s e  above the l i m -  

i ta t ions  o f  counting s tat is t ics .  

Topic dt4. As we saw i n  Figure 10, clusters of galaxies dminate 

the discrete source component of the extragalactic sky bel- 5 10 keW 

while Seyferts doatinate above * 10 keV. By examining the f luctuat ions 

i n  sky surface brightness separately for these two regimes R. Shafer 

w i l l ,  i n  effect, be set t ing constraints on the Log N-Log S re la t ion  

f o r  these two classes of objects down t o  a level  somewhat below 

Crab. 

Topic #5. To obtain s t a t i s t i c a l l y  independent samples o f  the sky 

re la t i ve  t o  point  objects i t  is suff icient t o  require that  there be no 

overlap i n  the f ie lds of view. For extended objects i t ' s  more coalpli- 

cated. I n  th i s  case R. Shafer i s  using an autocorrelation analysis. 

This i s  par t icu lar ly  important f o r  establishing some character ist ic 

parameters of a possibly clumpy intergalact ic hot plasma. 

Topic 56. We already know fram the work o f  de Vaucouleurs (1971) 

and others that  the local  region of the universe wi th in  

isotropic i n  op t ica l l y  observable galaxies and that  t h i s  so cal led 

" local supergalaxy" i s  l i k e l y  t o  be anisotropic i n  X-rays as well. However. 

the rather bronounced fluctuations i n t r i n s i c  t o  the X-ray sky impose 

a noise on such measurements of surface brightness variat ions tha t  amounts 

t o  several per cent over resolut ion elements o f  a few square degrees. 

To get around t h i s  problem S. Pravdo i s  f i r s t  t ry ing  a global strategy 

20 Mpc i s  not 
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whereby he w i l l  integrate d i f fuse  X-ray data over supergalactic longitude 

as a function of supergalactic lat i tude. Later on he w i l l  t ry correlat ions 

with galaxy counts. 

Topic #7. Since the proper fram of the extragalactic background 

i s  not l i k e l y  t o  be anchored t o  the solar system we should be able t o  

detect our veloci ty re la t i ve  t o  t h i s  preferred frame. In part icular, 

observers o f  the microwave background (cf. Snoot, b rens te in  and Uu l le r  

1977) have already detected a net veloci ty of % 300 Wsec. The l im i ta t i on  

t o  Reasuring a ve loc i ty  o f  such magnitude !n X-rays is tha t  the correspond- 

ing anisotropy q l i t u d e  i s  only about 0.4% and we have re la t i ve l y  large 

fluctuations i n t r i n s i c  t o  the sky t o  deal with. However, these fluctuations 

can be minimized by re ject ing data contaminated with resolved sources. 

By re ject ing sources a t  the level  o f  0.5 mi l l i -Crab the ult imate sensi- 

t i v i t y  corresponds t o  the detection o f  an amplitude of 0.4% a t  a s t a t i s t i c a l  

level somewhat bet ter  than 40. Since we s t i l l  don't know about i n t r i n s i c  

sky f luctuations above 10 keV, th i s  higher energy regime i s  s t i l l  an 

open question. However, for the f u l l  bandwidth of t h i s  experiment, F. 

Marshall has already established an upper l i m i t  o f  about 1% based on 

a small f ract ion of the available data. 

Topic 18. Bleach a. (1972) and Hol t  e t  al. (1974) have considered 

that  some of the weak unidenti f ied hard X-ray sources a t  high galact ic 

la t i tude  might represent a re la t i ve l y  large population o f  low luminosity 

objects wi th in  our galaxy producing a r idge of unresolved hard X-ray 

emission. Observations p r io r  t o  HEAO by R. Bleach i n  our group and W. 

Wheaton (1976) a t  UCSD give some evidence f o r  such a rldge. This 
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apparently d i f fuse  hard X-ray m iss ion  i s  being investigated with our 

HEAO data. tiowever, the rea l  breakthrough on th is question came when 

we began t o  look a t  some well known opt ica l  objects ident i f ied as bright, 

so f t  X-ray sources, From the work o f  Swank e t  at. (1977) we have learned 

that  although the photon f l u x  fran AM Her i s  predominantly soft (a t  

energies less than a few hundred electron uni ts)  most o f  the luminosity 

resides i n  hard X-rays (a t  energies i n  the tens of k i l ovo l t s  range). 

Recently analyzed resul ts  frost the ANS s a t e l l i t e  (Heise e t  al., 1978) 

indicate tha t  a s imi lar  s i tua t ion  holds f o r  SS Cygni. We have confirmed 

these resul ts and extended them wi th  HEAO. Fur themre,  after our A-2 

collaborators i n  Cal i forn ia  (Gamire e t  al. 1977) discovered wi th  HEAO 

that  U Geminorua can also e m i t  a huge f lux of s o f t  X-rays, J. Swank 

(1978, pr ivate carrmunication) a t  Goddard looked carefu l ly  for a possible 

small f lux  o f  hard X-rays and again found that, although the f lux i s  

low, there i s  indeed emission i n  the hard X-ray band. The typ ica l  X- 

ray luminosity o f  these sources i s  * 
of our Sun, whereas most of the hundred or so hard X-ray sources i n  our 

galaxy previously detected i n  sky surveys have luminosit ies three to  

f i v e  orders o f  magnitude higher, These three low luminoslty sources 

are a l l  binaries, with periods i n  the range 3.1 - 6,5 hours, and are 

thought t o  involve accretion onto a whi te  dwarf. These three sources 

are $11 with in  about 200 pc of the Sun. Sources such as these much 

beyond a few hundred parsecs would be unobservable i n  so f t  X-rays, 

Hoy-ver, there should be on the order o f  10 such sources i n  the galaxy 

and, by v i r tue  of t h e i r  emission i n  hard X-rays, should make a major 

erg/s, l i k e  the opt ica l  luminosity 

4 
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contribution t o  any apparently diffuse galactic ridge seen i n  the hard 

X - r a y  band. 

Topic t9. Finally, there should be some truly diffuse galactic 

X-ray background since we know that cosmic ray electrons col l id ing with 

&ient microwave photons and s tar l ight  do produce hard X-rays. Here 

again, as i n  topics X6 and X7, we must get around the problem of brightness 

fluctuations in t r ins ic  t o  the extragalactic sky. I n  other words, d e l  

testing and correlations with other data are required. 0. Worrall i s  

working an th i s  by considering models for the galactic confinement of 

re la t i v i s t i c  electrons that might be tested, and she and F. Mrsha l l  

a. e investigating correlations with the galactic radio background. 

My coinvestigators and I thank those responsible fo r  the beauti ful ly 

performing payload that has made the A-2 experiment a suc .ss (see 

Table 4). 



- 22 - 
TABLE 4 

PRIME RESPONSIBILITY FOR PAYLOAD (ACKNOWLEDGEMENTS)* 

HEAO Project Manager 

HEAO-1 Project Scient ist  

A-2 Lxperiarent Manager 

Systems Engineer 

Detector Systems 

Mechanical Systems 

Gas SysteRts 

Power System 

Thermal System 

Col l  imator Development 

Detector Signal Processing Electronics 

Data Processing Electronics 

Data Format Electronics 

Elect r ica l  Control System 

Special LED Related Systems (CIT) 

Test  Pulse Generator Design (UCB) 

E l  e c t r i  cal I ntegrat i  on 

Mechanical Integration 

HEAO Project Manager (MSFC) 

A-2 Experiment Manager (MSFC) 

R. Browning 

F. McDonald 

D. Wrublik 

R. Mart in 

C. Glasser 

W. Sours 

3. Robinson 

J . Wes trm 

J. Webb 

D. Studenick 

C. Cancro 

H. White 

F. Link 

3. Libby 

3. Vu 

H. Primbsch 

R. Porter 

K. Rosette 

F. Speer 

D. Talley 

* 
A t  GSFC, except where indicated. 
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FIGURE CAPTIONS 

Figure 1. The spectrum of the d i f fuse background omnidirectional 

f lux (curve a) i s  shown wi th  spectra for Sco X-1  and the 

Crab Nebula obtained with the same rocket-borne proportional 

counters (Boldt -- e t  al. 1969; Hol t  et a 1969). The spectrun 

for the quiet  sun (Chodil et a. 1965) i s  shown as a dashed 

line. The spectrum of the d i f fuse background obtained wi th  

bal loon-borne detectors flown by the University o f  Leiden 

(Bleeker and Deerenberg 1970) i s  shown as curve b. Data 

points shown for the background spectrum were obtained with the 

UCSD s c i n t i  1 l a t o r  experiment aboard OSO-3 (Schwartz, Hudson 

and Peterson 1970). The s o l i d  curves indicate "best f i t s "  

t o  the rocket and balloon data. 

Laboratory photograph o f  a medium energy detector (MED); I 

overal l  length i s  about one meter. The copper-shielded 

aluminum housing is f i l l e d  wi th  P10 (argon methane mixture) 

proportional counter gas. The analog electronics for the 

detector are mounted a t  one end and the d i g i t a l  electronics are 

suspended below. The cylinders on the side house the dr ive 

mechanism f o r  a ca l ibrat ion source that  can be brought i n t o  

and out o f  the f i e l d  of view. 

Dual col l imator f o r  MED showing 3' x 3' and 3' x 1 4' c e l l  

arrangement, as viewed from below, on axis. 

A r t i s t i c  conception o f  the A-2 experiment as incorporated 

i n t o  HEAO-1. Start ing from the side away froe the Sun, 

Figure 2. 

Figure 3. 

Figure 4. 
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Figure 5. 

Figure 6. 

Figure 7. 

the detectors are LED #1 fol lowed by LED #2 o f f s e t  from 

the deck by 6' (both these low energy detectors have 

acoustic covers which were closed during the launch and 

acqu is i t i on  phases; they now serve as sun shields). HED #1 

i s  next, a lso o f f se t  by ',Os fol lowed by HED 12 on the deck 

w i th  the same co l l ima t ion  as HED #1. The MED i s  next on the 

deck, followed by HED #3 (c losest t o  the so la r  panels) w i t h  

the same co l l ima t ion  as the MED. The three HED's and MED 

have r i g i d  sun shades, as shown, 

A schematic representation of the c e l e s t i a l  scan executed 

by any one o f  the s i x  detectors of the A2 experiment. The 

z d i r e c t i o n  points  from HEAO t o  the sun and provides the 

ax is  of scanr,ing. e = 1 %' f o r  LED 81, MED and HED #3. 

e = 3' f o r  LED #2, HED #l and HED #2. 

Histograms o f  observed samples sorted according t o  count per 

telemetry major frame (40.96s) f o r  HED #1, c lass i f i ed  

according t o  f i e l d  o f  view, 3' x 6' o r  3' x 3'. 

The r a t i o  (R) o f  observed t o  predicted counts as a function 

o f  observed energy (keV), The s o l i d  c i r c l e s  refer t o  data 

from the f i r s t  layer  o f  HED #1 (here designated #1) and the 

open c i r c l e s  t o  data from the f i r s t  layer  o f  HED #3 (here 

designated 83) .  The assumed inc ident  spectra a r e  of the 
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Figure 8. The r a t i o  (R) of observed t o  predicted counts as a function of 

observed energy (kcV). For HED's (here designated #l and #3) 

data from both layers are exhibited; layer il i s  designated 

Ml and layer #2 i s  designated M2. MED data are also used 

f o r  the "best fit" spectrum, shown by X's i n  the middle plot. 

The assumed incident spectra are of the form 
- dN L?c E-1 
dE 
factor discussed by Matzler e t  a l .  (1977). 

Incident photon number spectrum for the Perseus Cluster 

in fer red from data obtained with GSFC Cosmic X-ray Spectr 

experiment aboard OSO-8 (Mushotzky e t  al.  1978). The spectrum 

i s  unfolded from the data on the basis of a model of thermal 

bremsstrahlung (w;th i r o n  l i n e  emission). 

Incident photon number spectrum f o r  3C390.3 in fer red from 

data obtained wi th  HED #3 from the A2 experiment aboard HEAO-1. 

The spectrum i s  unfolded from the data on the basis of a 

power-1 aw spectrum absorbed by cool matter o f  cosmic abundance. 

Incident photon number spectrum for Markarian 501 inferred 

from data obtained with HED #1 from the A2 experiment aboard 

HEAO-1. The spectrum i s  unfolded from the data on the basis 

of a power-law spectrum. 

The X-ray f lux from the extragalactic sky as i t  would be 

viewed by an omnidirectional (4a) spectrometer (see text) .  

g(E,T) exp (-E/kT), where g(E,T) i s  the Gaunt 

Figure 9. 

ly 

Figure 10. 

Figure 11 . 

Figure 12. 
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