113 research outputs found

    Can We Manage for Resilience? The Integration of Resilience Thinking into Natural Resource Management in the United States

    Get PDF
    The concept of resilience is now frequently invoked by natural resource agencies in the US. This reflects growing trends within ecology, conservation biology, and other disciplines acknowledging that social–ecological systems require management approaches recognizing their complexity. In this paper, we examine the concept of resilience and the manner in which some legal and regulatory frameworks governing federal natural resource agencies have difficulty accommodating it. We then use the U.S. Forest Service’s employment of resilience as an illustration of the challenges ahead

    Embracing panarchy, building resilience and integrating adaptive management through a rebirth of the National Environmental Policy Act

    Get PDF
    Environmental law plays a key role in shaping policy for sustainability of socialeecological systems. In particular, the types of legal instruments, institutions, and the response of law to the inherent variability in socialeecological systems are critical. Sustainability likely must occur via the institutions we have in place, combined with alterations in policy and regulation within the context of these institutions. This ecosystem management arrangement can be characterized as a panarchy, with research on sustainability specific to the scale of interest. In this manuscript we examine an opportunity for integrating these concepts through a regulatory rebirth of the National Environmental Policy Act (NEPA). NEPA currently requires federal agencies to take a “hard look” at the environmental consequences of proposed action. The original intent of NEPA, however, was more substantive and its provisions, while currently equilibrium based, may be reconfigured to embrace new understanding of the dynamics of socialeecological systems

    Sea turtle nesting in the Ten Thousand Islands of Florida

    Get PDF
    Loggerhead sea turtles (Caretta caretta) nest in numerous substrate and beach types within the Ten Thousand Islands (TTl) of southwest Florida. Nesting beach selection was analyzed on 12 islands within this archipelago. Numerous physical characteristics were recorded to identify the relatedness of these variables and determine their importance for nesting beach selection in C. caretta. These variables were chosen after evaluating the islands, conducting literature searches and soliciting personal communications. Along transects, data were collected, on the following: height of canopy, beach width, overall slope (beach slope and slope of offshore approach) and sand samples analyzed for pH, percentage of water, percentage of organic content, percentage of carbonate and particle size (8 size classes). Data on ordinal aspect of beaches and beach length were also recorded and included in the analysis. All of the variables were analyzed by tree regression, incorporating the nesting data into the analysis. In the TTl, loggerheads appear to prefer wider beaches (p< 0.001; R2 = 0.56) that inherently have less slope, and secondarily, wider beaches that have low amounts of carbonate (p< O.00 1). In addition, C. caretta favors nest sites within or in close proximity to the supra-littoral vegetation zone of beaches in the TTl (p< 0.001). (86 page document

    Time-series Analysis of Clusters in City Size Distributions

    Get PDF
    Complex systems, such as urban systems, emerge unpredictably without the influence of central control as a result of adaptive behavior by their component, interacting agents. This paper analyses city size distributions, by decade, from the south-western region of the United States for the years 1890–1990. It determines if the distributions were clustered and documents changes in the pattern of clusters over time. Clusters were determined utilizing a kernel density estimator and cluster analysis. The data were clustered as determined by both methods. The analyses identified 4–7 clusters of cities in each of the decades analysed. Cities cluster into size classes, suggesting variability in growth rates at different scales

    Adaptive management for ecosystem services

    Get PDF
    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and nonlinearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population

    Sustainability for shrinking cities

    Get PDF
    Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing conditions and to cope with major events. The dynamics of shrinking cities are different than the dynamics of growing cities, and therefore intentional research and planning around creating sustainable cities is needed for shrinking cities. We propose research that can be applied to shrinking cities by identifying parallel challenges in growing cities and translating urban research and planning that is specific to each city’s dynamics. In addition, we offer applications of panarchy concepts to this problem. The contributions to this Special Issue take on this forward-looking planning task through drawing lessons for urban sustainability from shrinking cities, or translating general lessons from urban research to the context of shrinking cities

    Adaptive management for ecosystem services

    Get PDF
    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and nonlinearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population

    Quantifying the Adaptive Cycle

    Get PDF
    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems

    Quantifying the Adaptive Cycle

    Get PDF
    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems

    How resilience is framed matters for governance of coastal social-ecological systems

    Get PDF
    Effective governance of social-ecological systems (SES) is an enduring challenge, especially in coastal environments where accelerating impacts of climate change are increasing pressure on already stressed systems. While resilience is often proposed as a suitable framing to re-orient governance and management, the literature includes many different, and sometimes conflicting, definitions and ideas that influence how the concept is applied, especially in coastal environments. This study combines discourse analysis of the coastal governance literature and key informant interviews in Tasmania, Australia, demonstrating inconsistencies and confusion in the way that resilience is framed in coastal governance research and practice. We find that resilience is most often framed as (1) a rate of recovery from disturbance or (2) the process of acting in response to, or anticipation of, a disturbance. A third framing considers resilience as an emergent property of SESs. This framing, social-ecological resilience, accounts for multiple configurations of SES, which necessitates adaptation and transformation strategies to address changes across temporal and spatial scales. Coastal managers recognised the value of this third framing for governing coastal SESs, yet the confusion and inconsistency in the literature was also evident in how they understood and applied resilience in practice. Expanding the use of social-ecological resilience is essential for more effective coastal governance, given the dynamics of coastal SESs and the intensity of social, economic, and environmental drivers of change these systems face. However, this requires addressing the unclear, confused, and superficial use of resilience-oriented concepts in research and policy discourse
    • …
    corecore