5 research outputs found

    Identifying Cis-Regulatory Sequences by Word Profile Similarity

    Get PDF
    Recognizing regulatory sequences in genomes is a continuing challenge, despite a wealth of available genomic data and a growing number of experimentally validated examples.We discuss here a simple approach to search for regulatory sequences based on the compositional similarity of genomic regions and known cis-regulatory sequences. This method, which is not limited to searching for predefined motifs, recovers sequences known to be under similar regulatory control. The words shared by the recovered sequences often correspond to known binding sites. Furthermore, we show that although local word profile clustering is predictive for the regulatory sequences involved in blastoderm segmentation, local dissimilarity is a more universal feature of known regulatory sequences in Drosophila.Our method leverages sequence motifs within a known regulatory sequence to identify co-regulated sequences without explicitly defining binding sites. We also show that regulatory sequences can be distinguished from surrounding sequences by local sequence dissimilarity, a novel feature in identifying regulatory sequences across a genome. Source code for WPH-finder is available for download at http://rana.lbl.gov/downloads/wph.tar.gz

    For each gene at each phase, one representative embryo image is shown, followed by the manual annotations extracted from BDGP

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Automatic image analysis for gene expression patterns of fly embryos"</p><p>http://www.biomedcentral.com/1471-2121/8/S1/S7</p><p>BMC Cell Biology 2007;8(Suppl 1):S7-S7.</p><p>Published online 10 Jul 2007</p><p>PMCID:PMC1924512.</p><p></p> A "â—†" is used to mark the common annotations (see Appendix A for abbreviations.

    Mitch - A rapidly evolving component of the Ndc80 kinetochore complex required for correct chromosome segregation in Drosophila

    No full text
    We identified an essential kinetochore protein, Mitch, from a genetic screen in D. melanogaster. Mitch localizes to the kinetochore, and its targeting is independent of microtubules (MTs) and several other known kinetochore components. Animals carrying mutations in mitch die as late third-instar larvae; mitotic neuroblasts in larval brains exhibit high levels of aneuploidy. Analysis of fixed D. melanogaster brains and mitch RNAi in cultured cells, as well as video recordings of cultured mitch mutant neuroblasts, reveal that chromosome alignment in mitch mutants is compromised during spindle formation, with many chromosomes displaying persistent mono-orientation. These misalignments lead to aneuploidy during anaphase. Mutations in mitch also disrupt chromosome behavior during both meiotic divisions in spermatocytes: the entire chromosome complement often moves to only one spindle pole. Mutant mitotic cells exhibit contradictory behavior with respect to the spindle assembly checkpoint (SAC). Anaphase onset is delayed in untreated cells, probably because incorrect kinetochore attachment maintains the SAC. However, mutant brain cells and mitch RNAi cells treated with MT poisons prematurely disjoin their chromatids, and exit mitosis. These data suggest that Mitch participates in SAC signaling that responds specifically to disruptions in spindle microtubule dynamics. The mitch gene corresponds to the transcriptional unit CG7242, and encodes a protein that is a possible ortholog of the Spc24 or Spc25 subunit of the Ndc80 kinetochore complex. Despite the crucial role of Mitch in cell division, the mitch gene has evolved very rapidly among species in the genus Drosophila
    corecore