16 research outputs found

    Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in Immunologically Quiescent Melanoma.

    Get PDF
    PurposeTumors with low frequencies of checkpoint positive tumor-infiltrating lymphocytes (cpTIL) have a low likelihood of response to PD-1 blockade. We conducted a prospective multicenter phase II trial of intratumoral plasmid IL-12 (tavokinogene telseplasmid; "tavo") electroporation combined with pembrolizumab in patients with advanced melanoma with low frequencies of checkpoint positive cytotoxic lymphocytes (cpCTL).Patients and methodsTavo was administered intratumorally days 1, 5, and 8 every 6 weeks while pembrolizumab (200 mg, i.v.) was administered every 3 weeks. The primary endpoint was objective response rate (ORR) by RECIST, secondary endpoints included duration of response, overall survival and progression-free survival. Toxicity was evaluated by the CTCAE v4. Extensive correlative analysis was done.ResultsThe combination of tavo and pembrolizumab was well tolerated with adverse events similar to those previously reported with pembrolizumab alone. Patients had a 41% ORR (n = 22, RECIST 1.1) with 36% complete responses. Correlative analysis showed that the combination enhanced immune infiltration and sustained the IL-12/IFNγ feed-forward cycle, driving intratumoral cross-presenting dendritic cell subsets with increased TILs, emerging T cell receptor clones and, ultimately, systemic cellular immune responses.ConclusionsThe combination of tavo and pembrolizumab was associated with a higher than expected response rate in this poorly immunogenic population. No new or unexpected toxicities were observed. Correlative analysis showed T cell infiltration with enhanced immunity paralleling the clinical activity in low cpCTL tumors

    Intratumoral Delivery of Plasmid Interleukin-12 Via Electroporation Leads to Regression of Injected and Non-Injected Tumors in Merkel Cell Carcinoma

    Get PDF
    Purpose: Interleukin-12 (IL12) promotes adaptive type I immunity and has demonstrated antitumor efficacy, but systemic administration leads to severe adverse events (AE), including death. This pilot trial investigated safety, efficacy, and immunologic activity of intratumoral delivery of IL12 plasmid DNA (tavo) via in vivo electroporation (i.t.-tavo-EP) in patients with Merkel cell carcinoma (MCC), an aggressive virus-associated skin cancer. Experimental Design: Fifteen patients with MCC with superficial injectable tumor(s) received i.t.-tavo-EP on days 1, 5, and 8 of each cycle. Patients with locoregional MCC (cohort A, N = 3) received one cycle before definitive surgery in week 4. Patients with metastatic MCC (cohort B, N = 12) received up to four cycles total, administered at least 6 weeks apart. Serial tumor and blood samples were collected. Results: All patients successfully completed at least one cycle with transient, mild (grades 1 and 2) AEs and without significant systemic toxicity. Sustained (day 22) intratumoral expression of IL12 protein was observed along with local inflammation and increased tumor-specific CD8+ T-cell infiltration, which led to systemic immunologic and clinical responses. The overall response rate was 25% (3/12) in cohort B, with 2 patients experiencing durable clinical benefit (16 and 55+ months, respectively). Two cohort A patients (1 with pathologic complete remission) were recurrence-free at 44+ and 75+ months. Conclusions: I.t.-tavo-EP was safe and feasible without systemic toxicity. Sustained local expression of IL12 protein and local inflammation led to systemic immune responses and clinically meaningful benefit in some patients. Gene electrotransfer, specifically i.t.-tavo-EP, warrants further investigation for immunotherapy of cancer

    Insulin-like growth factor (IGF) and IGF binding proteins during pregnancy in the rat and human / by Sharron Erna Gargosky

    No full text
    Bibliography : leaves 79-101xix, 101, [54] leaves, [12] leaves of plates : ill ; 30 cm.Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 199

    Phase 2 comparison of a novel ammonia scavenging agent with sodium phenylbutyrate in patients with urea cycle disorders: safety, pharmacokinetics and ammonia control

    No full text
    Glycerol phenylbutyrate (glyceryl tri (4-phenylbutyrate)) (GPB) is being studied as an alternative to sodium phenylbutyrate (NaPBA) for the treatment of urea cycle disorders (UCDs). This phase 2 study explored the hypothesis that GPB offers similar safety and ammonia control as NaPBA, which is currently approved as adjunctive therapy in the chronic management of UCDs, and examined correlates of 24-h blood ammonia.METHODS: An open-label, fixed sequence switch-over study was conducted in adult UCD patients taking maintenance NaPBA. Blood ammonia and blood and urine metabolites were compared after 7 days (steady state) of TID dosing on either drug, both dosed to deliver the same amount of phenylbutyric acid (PBA).RESULTS: Ten subjects completed the study. Adverse events were comparable for the two drugs; 2 subjects experienced hyperammonemic events on NaPBA while none occurred on GPB. Ammonia values on GPB were approximately 30% lower than on NaPBA (time-normalized AUC=26.2 vs. 38.4 micromol/L; Cmax=56.3 vs. 79.1 micromol/L; not statistically significant), and GPB achieved non-inferiority to NaPBA with respect to ammonia (time-normalized AUC) by post hoc analysis. Systemic exposure (AUC(0-24)) to PBA on GPB was 27% lower than on NaPBA (540 vs. 739 microgh/mL), whereas exposure to phenylacetic acid (PAA) (575 vs. 596 microg h/mL) and phenylacetylglutamine (PAGN) (1098 vs. 1133 microg h/mL) were similar. Urinary PAGN excretion accounted for approximately 54% of PBA administered for both NaPBA and GPB; other metabolites accounted for \u3c1%. Intact GPB was generally undetectable in blood and urine. Blood ammonia correlated strongly and inversely with urinary PAGN (r=-0.82; p\u3c0.0001) but weakly or not at all with blood metabolite levels.CONCLUSIONS: Safety and ammonia control with GPB appear at least equal to NaPBA. Urinary PAGN, which is stoichiometrically related to nitrogen scavenging, may be a useful biomarker for both dose selection and adjustment for optimal control of venous ammonia
    corecore