5 research outputs found

    Detection of Depression Using Weighted Spectral Graph Clustering With EEG Biomarkers

    Get PDF
    The alarming annual growth in the number of people affected by Major Depressive Disorder (MDD) is a problem on a global scale. In the primary scrutiny of depression, Electroencephalography (EEG) is one of the analytical tools available. Machine Learning (ML) and Deep Neural Networks (DNN) methods are the most common techniques for MDD diagnosis using EEG. However, these ML methods heavily rely on manually annotated EEG signals, which can only be generated by experts, for training. This also necessitates a large amount of memory and time constraints. The requirement of huge amounts of data to foresee emerging tendencies or undiscovered alignments is enforced. This article develops an unsupervised learning method for identifying MDD in light of these difficulties. The preprocessed EEG is used to extract three quantitative biomarkers (Band Power: Beta, Delta, and Theta), and three signal features (Detrended Fluctuation Analysis (DFA), Higuchi’s Fractal Dimension (HFD), and Lempel-Ziv Complexity (LZC)). Through the extracted features, an undirected graph is created using the features as a weight along the edges, with nodes as channels in EEG recording. The bifurcation of the subjects in either of the classes (MDD or N) is done by implementing spectral clustering. A 98% accuracy with a 2.5% of miss-classification error is achieved for the left hemisphere. In contrast, a 97% accuracy with a 3.3% CEP (or miss-classification error or Classification Error Percentage) is achieved for the right hemisphere. FP1 and F8 channels have achieved the highest possible level of classification accuracy.publishedVersio

    Persistence of the ground beetle (Coleoptera: Carabidae) microbiome to diet manipulation.

    No full text
    Host-associated microbiomes can play important roles in the ecology and evolution of their insect hosts, but bacterial diversity in many insect groups remains poorly understood. Here we examine the relationship between host environment, host traits, and microbial diversity in three species in the ground beetle family (Coleoptera: Carabidae), a group of roughly 40,000 species that synthesize a wide diversity of defensive compounds. This study used 16S amplicon sequencing to profile three species that are phylogenetically distantly related, trophically distinct, and whose defensive chemical secretions differ: Anisodactylus similis LeConte, 1851, Pterostichus serripes (LeConte, 1875), and Brachinus elongatulus Chaudoir, 1876. Wild-caught beetles were compared to individuals maintained in the lab for two weeks on carnivorous, herbivorous, or starvation diets (n = 3 beetles for each species-diet combination). Metagenomic samples from two highly active tissue types-guts, and pygidial gland secretory cells (which produce defensive compounds)-were processed and sequenced separately from those of the remaining body. Bacterial composition and diversity of these ground beetles were largely resilient to controlled changes to host diet. Different tissues within the same beetle harbor unique microbial communities, and secretory cells in particular were remarkably similar across species. We also found that these three carabid species have patterns of microbial diversity similar to those previously found in carabid beetles. These results provide a baseline for future studies of the role of microbes in the diversification of carabids

    Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda

    No full text
    Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda

    Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda.

    No full text
    BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 ( RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.)
    corecore