63 research outputs found
Time Evolution of Temperature Fluctuation in a Non-Equilibrated System
The evolution equation for inhomogeneous and anisotropic temperature
fluctuation inside a medium is derived within the ambit of Boltzmann Transport
Equation (BTE) for a hot gas of massless particles. Also, specializing to a
situation created after heavy-ion collision (HIC), we analyze the Fourier space
variation of temperature fluctuation of the medium using its temperature
profile. The effect of viscosity on the variation of fluctuations in the latter
case is investigated and possible implications for early universe cosmology,
and its connection with HICs are also explored.Comment: 5 pages, 5 figures, Minor changes in the tex
Indication of a Differential Freeze-Out in Proton-Proton and Heavy-Ion Collisions at RHIC and LHC Energies
The experimental data from the RHIC and LHC experiments of invariant spectra for most peripheral and collisions are analyzed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential, and radial flow velocity for , , and and their antiparticles is obtained. Furthermore, these parameters are studied as a function of the mass of the particles. A mass dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Furthermore, a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters
Towards robust PICOSEC Micromegas precise timing detectors
The PICOSEC Micromegas (MM) detector is a precise timing gaseous detector
consisting of a Cherenkov radiator combined with a photocathode and a MM
amplifying structure. A 100-channel non-resistive PICOSEC MM prototype with
10x10 cm^2 active area equipped with a Cesium Iodide (CsI) photocathode
demonstrated a time resolution below 18 ps. The objective of this work is to
improve the PICOSEC MM detector robustness aspects; i.e. integration of
resistive MM and carbon-based photocathodes; while maintaining good time
resolution. The PICOSEC MM prototypes have been tested in laboratory conditions
and successfully characterised with 150 GeV/c muon beams at the CERN SPS H4
beam line. The excellent timing performance below 20 ps for an individual pad
obtained with the 10x10 cm^2 area resistive PICOSEC MM of 20 MOhm/sq showed no
significant time resolution degradation as a result of adding a resistive
layer. A single-pad prototype equipped with a 12 nm thick Boron Carbide (B4C)
photocathode presented a time resolution below 35 ps; opening up new
possibilities for detectors with robust photocathodes. The results made the
concept more suitable for the experiments in need of robust detectors with good
time resolution
A large area 100 channel Picosec Micromegas detector with sub 20 ps time resolution
The PICOSEC Micromegas precise timing detector is based on a Cherenkov
radiator coupled to a semi-transparent photocathode and a Micromegas
amplification structure. The first proof of concept single-channel small area
prototype was able to achieve time resolution below 25 ps. One of the crucial
aspects in the development of the precise timing gaseous detectors applicable
in high-energy physics experiments is a modular design that enables large area
coverage. The first 19-channel multi-pad prototype with an active area of
approximately 10 cm suffered from degraded timing resolution due to the
non-uniformity of the preamplification gap. A new 100 cm detector module
with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for
improved drift gap uniformity was developed. Initial measurements with 80 GeV/c
muons showed improvements in timing response over measured pads and a time
resolution below 25 ps. More recent measurements with a new thinner drift gap
detector module and newly developed RF pulse amplifiers show that the
resolution can be enhanced to a level of 17~ps. This work will present the
development of the detector from structural simulations, design, and beam test
commissioning with a focus on the timing performance of a thinner drift gap
detector module in combination with new electronics using an automated timing
scan method
- …