56 research outputs found

    Time Evolution of Temperature Fluctuation in a Non-Equilibrated System

    Get PDF
    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored.Comment: 5 pages, 5 figures, Minor changes in the tex

    Indication of a Differential Freeze-Out in Proton-Proton and Heavy-Ion Collisions at RHIC and LHC Energies

    Get PDF
    The experimental data from the RHIC and LHC experiments of invariant spectra for most peripheral and collisions are analyzed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential, and radial flow velocity for , , and and their antiparticles is obtained. Furthermore, these parameters are studied as a function of the mass of the particles. A mass dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Furthermore, a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters

    A large area 100 channel Picosec Micromegas detector with sub 20 ps time resolution

    Full text link
    The PICOSEC Micromegas precise timing detector is based on a Cherenkov radiator coupled to a semi-transparent photocathode and a Micromegas amplification structure. The first proof of concept single-channel small area prototype was able to achieve time resolution below 25 ps. One of the crucial aspects in the development of the precise timing gaseous detectors applicable in high-energy physics experiments is a modular design that enables large area coverage. The first 19-channel multi-pad prototype with an active area of approximately 10 cm2^2 suffered from degraded timing resolution due to the non-uniformity of the preamplification gap. A new 100 cm2^2 detector module with 100 channels based on a rigid hybrid ceramic/FR4 Micromegas board for improved drift gap uniformity was developed. Initial measurements with 80 GeV/c muons showed improvements in timing response over measured pads and a time resolution below 25 ps. More recent measurements with a new thinner drift gap detector module and newly developed RF pulse amplifiers show that the resolution can be enhanced to a level of 17~ps. This work will present the development of the detector from structural simulations, design, and beam test commissioning with a focus on the timing performance of a thinner drift gap detector module in combination with new electronics using an automated timing scan method

    Towards robust PICOSEC Micromegas precise timing detectors

    Full text link
    The PICOSEC Micromegas (MM) detector is a precise timing gaseous detector consisting of a Cherenkov radiator combined with a photocathode and a MM amplifying structure. A 100-channel non-resistive PICOSEC MM prototype with 10x10 cm^2 active area equipped with a Cesium Iodide (CsI) photocathode demonstrated a time resolution below 18 ps. The objective of this work is to improve the PICOSEC MM detector robustness aspects; i.e. integration of resistive MM and carbon-based photocathodes; while maintaining good time resolution. The PICOSEC MM prototypes have been tested in laboratory conditions and successfully characterised with 150 GeV/c muon beams at the CERN SPS H4 beam line. The excellent timing performance below 20 ps for an individual pad obtained with the 10x10 cm^2 area resistive PICOSEC MM of 20 MOhm/sq showed no significant time resolution degradation as a result of adding a resistive layer. A single-pad prototype equipped with a 12 nm thick Boron Carbide (B4C) photocathode presented a time resolution below 35 ps; opening up new possibilities for detectors with robust photocathodes. The results made the concept more suitable for the experiments in need of robust detectors with good time resolution

    Time evolution of temperature fluctuation in a non-equilibrated system

    Get PDF
    • …
    corecore