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Abstract. The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a
medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless
particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier
space variation of temperature fluctuation of the medium using its temperature profile. The effect of
viscosity on the variation of fluctuations in the latter case is investigated and possible implications for
early universe cosmology, and its connection with HICs are also explored.

1 Introduction

Fluctuation is a normal occurrence in physical systems.
Because of their stochastic nature, the value of certain
observables deviates from their average value, which may
be defined over a large time or over a large number of
identically prepared systems (ensembles). The well-known
phenomenon of critical opalescence, for example, is caused
by fluctuations at all length scales during a second-order
phase transition.

In high-energy collision experiments, the search for
fluctuations of quantities (like net charge [1,2]) over large
number of events is important for searching the critical
point [3] or tri-critical point [4] in the quantum chromody-
namic (QCD) phase diagram. The study of particle multi-
plicity ratio fluctuation [5] is another such example in this
context.

Much in the same way as number of particles in a cer-
tain region of a system fluctuates, the everyday examples
teach us that the temperature for physical systems can
also fluctuate. Apart from the examples from high-energy
collisions where particle yield has shown the signature of
temperature fluctuation [6–16], there are numerous other
situations (like cosmological perturbations in our expand-
ing universe as sources of temperature fluctuation) where
the concerned system is not in global thermal equilibrium.
The temperature, on the contrary varies with time and
space. The temperature fluctuation associated with such
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Fig. 1. (Color online) Pictorial representation of hotspots in
a medium.

kinds of systems encodes transport properties like con-
ductivity, shear viscosity, rates of chemical reactions etc.
As the system evolves, dynamics dictates the temperature
fluctuation until a state of minimum energy, or equilibrium
is attained.

The evolution of the fluctuations has been investigated
for systems concerned with high-energy collisions employ-
ing Boltzmann Transport Equation (BTE) [17, 18]. It is
now important to study temperature fluctuation as well
as its evolution in such systems as they can characterize
the medium created after high-energy collisions [19,20] or
may give a hint to the QCD critical point [21].

A medium with spatially fluctuating temperature can
be schematically represented by fig. 1, where, within a
large system, we encounter subsystems with different tem-
perature values and the temperature has radial variation
only. The temperature profile for a system produced in
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one central event in Pb-Pb collisions at 2.76TeV has been
obtained from hydrodynamic calculations in refs. [19, 20]
and the profile can very well be approximated to vary ra-
dially. In our present work, we model the time evolution
of temperature fluctuation among these subsystems. At
any certain time slice, we assume that the system com-
prises temperature hotspots or zones evolving with time.
This is essentially the assumption of local thermodynamic
equilibrium of matter, and the temperature hotspots are
assumed to be weakly interacting. This assumption in turn
implies that particles in a certain temperature zone hardly
affect those in other temperature zones. In fact, (assuming
zero chemical potential) such systems can be represented
by a collection of canonical ensembles [22] with different
temperature values. The probability that a certain mem-
ber of the ensemble will be having a certain energy at
some instant will depend on the fluctuating temperature
values of the collection of subsystems.

In the present work, we try to find out an evolution
equation of the fluctuation in Boltzmann parameter β
(= 1/T ) with the aid of Boltzmann Transport Equation in
Relaxation Time Approximation (RTA) assuming a con-
straint that the observation time is much less than the re-
laxation time of the thermal bath. Later on we analyze the
same problem for arbitrary observation time. This model
may help us to understand the evolution of temperature
fluctuation in the Quark-Gluon Plasma (QGP) medium
created in Heavy-Ion Collision (HIC) experiments.

Hence, the manuscript is organized as follows. In sect. 2
we begin by considering the BTE and the evolution of
β-fluctuation, followed by analysis specific to heavy-ion
collisions with arbitrary observation time. We then discuss
our results in sect. 3 where the relative variance of the
Boltzmann β-parameter will be compared with the similar
quantities extracted from experimental data. Lastly, we
conclude by conjecturing possible connections with early
universe cosmology.

2 The methodology

In order to gain qualitative insight into the evolution of
temperature fluctuation, we consider an ansatz [23] of the
particle distribution function f ,

f = e−βp(1+Δβ), (1)

where we consider a medium with Boltzmann distribu-
tion of massless particles (p = |p| = E) with average
inverse temperature β(t), at some time slice. In the high-
temperature regime (βE � 1), that we are interested in,
quantum statistics tend towards Boltzmann distribution.
The average inverse temperature of the system is calcu-
lated considering the arithmetic mean of the distribution
of temperature hotspots, i.e. if there are ni hotspots in-
dividually characterized by inverse temperatures βi, then
the average is calculated as Σniβi

Σni
. Generalizing this to

the continuum limit, we add an anisotropic and inhomo-
geneous fluctuation function Δβ(r, p̂; t), where p̂ is a unit
vector along the direction of motion of the particle. The
p̂ dependence encodes the anisotropy of the fluctuation.

We now discuss the temporal evolution of the fluctuation
with the help of BTE.

The generic form of BTE can be written as

df

dt
=

∂f

∂t
+ v · ∇f + F · ∇pf = C[f ], (2)

where v is the particle velocity, F is any external force
(like gravity) and C[f ] is the collision term encoding
the information about interaction. ∇p is the momentum-
space gradient operator. For our present case, we assume
that the system experiences no external force, and hence
F = 0. However, the inhomogeneity in Δβ still exists.
Assuming the |Δβ| � 1, we get

f ≈ e−pβ−pβΔβ
∣
∣
Δβ=0

+ β
∂

∂β

[

e−pβ−pβΔβ
]
∣
∣
∣
∣
Δβ=0

Δβ

= e−pβ − pβe−pβΔβ

= f (0) − f (0)pβΔβ. (3)

Using f (0) = e−pβ and putting eq. (3) in eq. (2), we get

∂

∂t

[

e−pβ − pβe−pβΔβ
]

+
pi

E

∂

∂xi

[

e−pβ − pβe−pβΔβ
]

=

−f − f (0)

tR
, (4)

where vi = pi/E, and we assume the relaxation time ap-
proximation for the collision term C[f ], with tR as the
relaxation time. Since equilibrium distributions are sta-
tionary and (in absence of external force) homogeneous,
the BTE for equilibrium distributions is identically satis-
fied. In the present scenario, we assume the equilibrium
distribution function f (0) to be stationary for a time du-
ration much longer than the observation time allowed by
BTE (but this time should be much less than tR, within
which the distribution changes appreciably), then

∂

∂t
f (0) +

pi

E

∂

∂xi
f (0) = 0 (5)

and hence, eq. (4) becomes

−p
∂Δβ

∂t
βf (0) − pi

E
βpf (0) ∂Δβ

∂xi
=

pβΔβf (0)

tR
(6)

if we assume the average inverse temperature of the hot
zones to be changing very slowly with time.

Expressing Δβ(r, p̂; t) in terms of its Fourier Trans-
form

Δβ(r, p̂; t) =
∫

d3kΔβk(t)eik·x, (7)

where we denote Δβ(k, p̂; t) ≡ Δβk(t) for simplicity.
Equation (6) becomes

−pβ
∂Δβk(t)

∂t
− pβ

tR
Δβk(t) − iβ

|p|
E

pkμΔβk(t) = 0

∂Δβk(t)
∂t

= −
[

i
|p|
E

kμ +
1
tR

]

Δβk(t), (8)
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Fig. 2. (Color online) Variation of Δβrel(k; t) with k. Red
(solid): (t − t0) = 1 fm, black (dashed): (t − t0) = 2 fm, blue
(dotted): (t − t0) = 3 fm for tR = 3 fm.

where k̂ · p̂ = μ = cos θ (θ is the angle k̂ makes with p̂).
The solution of eq. (8) is then given by (see [24], for ex-
ample, for similar equation in context of energy density
fluctuation)

Δβ(k, p̂; t) = Δβ(k, p̂; t0)e−i
|p|
E kμ(t−t0)e

− t−t0

tR . (9)

We can simplify eq. (9) by assuming an isotropic fluctu-
ation profile. Thus, assuming |p| = E we get a simplified
expression for the temporal evolution of fluctuation for a
medium of massless particles. We further average over the
whole solid angle Ω subtended by p̂. Here k is a constant
vector assumed to be directed along the z-axis. Hence, the
averaged fluctuation becomes

Δβav(k; t) = Δβ(k; t0)e−
t−t0

tR
1
4π

∫

Ω

e−ikμ(t−t0)dΩ

= Δβ(k; t0)e−
t−t0

tR
1
4π

∫ 1

−1

dμe−ikμ(t−t0)

∫ 2π

0

dφ

Δβrel(k; t) =
Δβav(k; t)
Δβ(k; t0)

= e
− t−t0

tR
sin k(t − t0)

k(t − t0)
. (10)

From eq. (10), we can infer that the relative fluctua-
tion Δβrel(k; t) is monotonically decreasing. In fig. 2 we
provide the plot depicting the parametric Fourier space
variation of the Δβrel(k; t) with time (t − t0). The relia-
bility of the variations shown in the figure is governed by
the constraint that the observation time must be much
less than the time taken by the distribution function to
change appreciably [25], i.e. the relaxation time tR,

(t − t0) � tR. (11)

According to our earlier assumption about very slow vari-
ation of β with time, (t − t0) should also be such a time-
interval within which we can assume the temperature of
the hotspots not to change appreciably.

We observe in fig. 2 that the relative fluctuations die
down with time. Additionally, the soft modes of fluctua-
tions, or in other words, fluctuations at larger distances to-
wards the periphery of the medium, are large. We observe

no modification of fluctuation with increasing tR when
(t − t0) � tR.

We have thus solved the evolution equation for the β-
fluctuation in the Fourier space using Boltzmann Trans-
port Equation. However, the generality of our calculation
is limited by the upper bound in eq. (11). Consequently,
eq. (9), which assumes a very slow variation of temper-
ature, cannot be applied to certain cases involving arbi-
trarily large observation times within which temperature
changes appreciably. With the aim to study a more realis-
tic situation, we can consider the temperature profiles of
an evolving medium at different time slices which are ar-
bitrarily separated. After quantifying the inverse temper-
ature fluctuation, we can find out the inverse temperature
fluctuation at every time-instant and will try to observe
their variation at different stages.

As an example, we have chosen the radially varying
temperature profile of a viscous medium created by heavy-
ion collisions from ref. [26]. We can characterize the tem-
perature profile of a viscous medium created in central
HIC (and evolving hydrodynamically) shown in ref. [26]
by the following function:

TM (r, t) =
T0(t)

ea(t)( r
r0

−1) + 1
, (12)

where at r = r0, TM (r) = T0/2; and TM (r) ≈ T0 at
r = 0 and a(t) is a parameter which fixes how sharply the
function drops down. From eq. (12), writing βM = 1/TM

we get

βM (r; t) = β0(t)
(

ea(t)( r
r0

−1) + 1
)

, (13)

where r denotes the radial distances of the zones from
the centre of the medium. Using eq. (13), we can generate
{βM} —a collection of βM values. Given the collection,
we can now define an average βM value 〈βM 〉 = β(t) at a
certain instant t and can define a fluctuation Δβ(r, t) as

Δβ(r, t) = βM (r, t) − β(t)

= β0(t)e
a(t)( r

r0
−1) + δβ(t), (14)

where δβ(t) = β0(t) − β(t). The Fourier Transform
Δβ(k; t) now becomes

Δβ(k; t) = Δβk

=
2β0(t)
(2π)2k

∫ R

0

ea(t)( r
r0

−1)r sin(k r)dr+δβ(t)δ(k),

(15)

where R is the system size (taken to be 15, 17.5 and 20 fm
at proper times τ = 2.2, 5.1 and 9.1 fm, respectively) and
δ(k) is the Dirac delta function.

3 Results and discussion

As seen from eq. (15), the soft modes of β-fluctuation be-
come dominant implying that towards the periphery (at
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Fig. 3. (Color online) Variation of inverse temperature fluc-
tuation (eq. (15)) in a viscous medium with k. (Upper panel)
Red (solid): τ = 2.2 fm/c, black (dashed): τ = 5.1 fm/c, blue
(dotted): τ = 9.1 fm/c. η/s = 0.08 for all the figures. (Lower
panel) Orange(solid): η/s = 0.08, black (dashed): η/s = 0.3 at
τ = 5.1 fm/c.

Table 1. Values of parameters extracted from the temperature
profile shown in ref. [26] using eq. (12) and the Rβ values using
eq. (16) at different τ with η/s = 0.08.

τ (fm/c) β0 (GeV−1) a r0 (fm) Rβ

2.2 3.45 5.99 7.96 0.047

5.1 4.55 3.42 8.41 0.011

9.1 5.56 1.91 8.71 0.002

large system radius), the fluctuation is greater. The varia-
tion of the inverse temperature fluctuation in the momen-
tum space is shown in the upper panel of fig. 3. The lower
panel of fig. 3 shows the variation of fluctuation for dif-
ferent viscosities of the medium. As intuitively expected,
higher viscosity favours lower fluctuations.

In the previous section, we have already defined the
average β(t) and fluctuation Δβ with the help of the
set {βM}. With the aid of the set {βM} generated from
eq. (12) we can now define a relative β-fluctuation

〈β2
M 〉 − 〈βM 〉2
〈βM 〉2 = Rβ . (16)

Using the β0, a and r0 values as tabulated in table 1,
we compare the Rβ in the system produced in HICs at
different stages of its evolution with the help of eq. (13).

Table 2. Relative fluctuations in β at τ = 5.1 fm/c with change
of viscosity.

η/s Rβ

0.08 0.012

0.3 0.011

We observe that within any arbitrary choice of radius
shell the relative fluctuations die down with time. For
demonstration, we have chosen the shell ranging between
the radii 14 fm to 15 fm in table 1, but our observation re-
mains unaltered for any other shell. This behavior of tem-
perature fluctuation has also been observed in refs. [19,20].

In table 2, we show the change in Rβ with viscosity
(for a radius shell ranging between 14 fm and 15 fm). With
increasing viscosity, the relative fluctuation decreases (see
also refs. [19, 20]), thereby leading to lower Rβ values.

As it turns out, the multiparticle production processes
in high-energy electron-positron [14], hadronic and heavy-
ion collisions [27–34] are quite accurately characterized by
a Tsallis entropic parameter q [35], which is similar to Rβ ,
and lies typically in the range 1 < q < 1.2 [36] in the con-
text of high-energy collisions. Here, we would like to briefly
mention some recent works done by the authors in [35,38]
connecting the q-parameter and the temperature fluctu-
ation or non-extensivity of thermal systems. The non-
extensive nature is manifested once we find out that the
simple addition of entropies (S) of two sub-parts (A and
B) of a bigger system C does not give the entropy of the
system C. Rather, S(C) = S(A)+S(B)+(1−q)S(A)S(B),
where q measures the degree of deviation from the addi-
tive domain. This leads to a proposal of modification of
the usual Boltzmann-Gibbs formula to

Gq(x) = [1 + (q − 1)βE]
−1

q−1 . (17)

As q → 1, Gq(x) → e−βE , and we recover the usual
Boltzmann-Gibbs formula. Therefore, q has also been
dubbed as the non-extensivity parameter in the literature.
In an elegant exposition of the same, Wilk [38] deduced
that

Gq(x) = [1 + (q − 1)βE]
−1

q−1

=
∫ ∞

0

e−β′Ef(β′)dβ′, (18)

where the distribution function f(β′) is the usual chi-
squared function given by

f(β′) =
αβ

Γ (α)

(
αβ

β′

)α−1

exp
(

−αβ

β′

)

, (19)

where α = 1
q−1 . With respect to the above chi-squared

distribution, we have the mean value 〈β′〉 = β, and also
the relative variance as

〈β′2〉 − 〈β′〉2
〈β′〉2 = q − 1. (20)
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Table 3. Comparison of Rβ at the boundary as obtained from
eq. (12) with the (q − 1) value obtained from experiment [37].

Rβ (q − 1)

0.013 0.018 ± 0.005

We can therefore make a correspondence between the Rβ

defined in eq. (16) and the (q−1) defined in eq. (20). The
non-zero values of q are associated not only with the rela-
tive β fluctuation in the system, but also with that during
the hadronization process [38–40]. This also gains signifi-
cance in the context of the QCD phase diagram and the
search for critical point which, in fact, may be associated
with large fluctuations in the q value [21]. Non-extensivity
of any thermodynamic system is invariably linked to tem-
perature fluctuation, and hence, the heat capacity/specific
heat of the system. However, whether the converse state-
ment holds is yet to be answered.

The q values for systems produced in high-energy col-
lisions can be obtained [37] by fitting the experimentally
observed particle spectrum which is obtained by averaging
over similar events. Since the present calculation is based
on a single event, (assuming the medium has frozen-out
by τ = 9.1 fm), we can study the temperature profile at
τ = 9.1 fm to compare the Rβ values with the experimen-
tally observed (q−1) values under similar conditions [37].
According to table 3, the Rβ value (∼ 0.013) at the sys-
tem boundary is comparable with the experimentally ob-
tained value (∼ 0.018 ± 0.005 for 0–10% central HICs at
RHIC with

√
sNN = 200GeV [37]). This observation re-

emphasizes the relationship between temperature fluctu-
ation and the q parameter [38] and hints towards a pos-
sibility that the temperature fluctuation inherent in the
quark-gluon system may give rise to the temperature fluc-
tuation in the hadronic spectra obtained after freeze-out.

Recently, modification of eq. (20) has been suggested
in ref. [41] where reservoir fluctuations are taken into ac-
count. The modified relation is given by

q − 1 =
〈β′2〉 − 〈β′〉2

〈β′〉2 − 1/C, (21)

where C is the heat capacity of the reservoir. It will be in-
teresting to extend the present analysis having this consid-
eration. Additionally, some comments about connecting
certain observables in HICs with the theory of cosmolog-
ical perturbations are in order. Cosmological anisotropies
reflect the energy content of the universe. The universe
starts off as radiation dominated, changes over to being
matter dominated, and is eventually conjectured to be
purely governed by the cosmological constant (Λ) [23].
WMAP [42] and Planck [43] both provide a fairly precise
representation of the energy distribution at our current
epoch —via physical quantities like Ωmatter, ΩΛ, Ωbaryons,
the acoustic scale, Hubble constant, neutrino fraction,
reionization optical depth and other derived quantities.
Since the anisotropies in temperature fluctuation are all
time-dependent, in later epochs these fluctuations would
die down, and theoretically one should expect a flat power

spectrum in the infinite future. However, authors in [44]
have conjectured that the temperature fluctuation of our
universe can be satisfactorily explained by the modified
Boltzmann-Gibbs formula with q = 1.045 ± 0.005. This
is quite remarkable since the similar q-value that fits
heavy-ion collision data also fits the data for cosmolog-
ical fluctuations. This points to deep similarities between
the physics of cosmic microwave background (CMB) radi-
ation anisotropies and the flow anisotropies in relativistic
heavy-ion collision experiments (RHICE). A relevant the-
oretical question would be: is the surface of last scatter-
ing for CMB radiation similar to the freeze-out surface in
RHICE? This is a question we reserve for future work.
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