136 research outputs found

    Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia

    Get PDF
    Abstract Phytosterols and omega-3 fatty acids are natural compounds with potential cardiovascular benefits. Phytosterols inhibit cholesterol absorption, thereby reducing total-and LDL cholesterol. A number of clinical trials have established that the consumption of 1.5-2.0 g/day of phytosterols can result in a 10-15% reduction in LDL cholesterol in as short as a 3-week period in hyperlipidemic populations. Added benefits of phytosterol consumption have been demonstrated in people who are already on lipid-lowering medications (statin drugs). On the other hand, omega-3 fatty acid supplementation has been associated with significant hypotriglyceridemic effects with concurrent modifications of other risk factors associated with cardiovascular disease, including platelet function and pro-inflammatory mediators. Recent studies have provided evidence that the combination of phytosterols and omega-3 fatty acids may reduce cardiovascular risk in a complementary and synergistic way. This article reviews the health benefits of phytosterols and omega-3 fatty acids, alone or in combination with statins, for the treatment/management of hyperlipidemia, with particular emphasis on the mechanisms involved

    Using personality as a predictor of diet induced weight loss and weight management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major challenge for successful weight management is tailoring weight loss programs to individual needs. The aim of this study was to investigate whether personality traits could be used to match individuals to a compatible weight loss program that would maximize weight loss.</p> <p>Method</p> <p>Two different weight loss trials were conducted, both with a weight loss greater than 5% the measure of success. Fifty-four individuals, BMI 30-40 kg/m<sup>2</sup>, either followed a slow, healthy eating weight loss diet (HEWLD) of 5000-6000 kJ/day for 12 weeks (n = 22), or a fast, very low energy diet (VLED) of 3000 kJ/day for 4 weeks (n = 32). Anthropometric measurements were recorded at baseline, at the end of the weight loss period and, for VLED, at the end of 10 weeks of weight maintenance. Personality traits were measured at baseline using the Tangney Self Control Scale plus 3 of the scales from the Five Factor Model - Neuroticism, Conscientiousness and Extraversion.</p> <p>Results</p> <p>The percentage weight loss was significantly greater in VLED (-7.38%) compared to HEWLD (-4.11%), (p < 0.001). Weight loss in HEWLD was positively correlated with Anxiety, a facet of Neuroticism. Weight loss in VLED was positively correlated with Neuroticism (r = 0.5, p < 0.01), and negatively correlated with Dutifulness and Discipline, facets of Conscientiousness, (p < 0.05 for both). No link was observed between weight loss and the personality trait, Self Control, in either HEWLD or VLED.</p> <p>Conclusion</p> <p>The personality factor, Neuroticism, was linked to successful weight loss (that is ≥ 5%) with a particular weight loss treatment, suggesting that there is a potential to use measures of personality to identify appropriate weight loss/management strategies for individuals.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12611000716965.aspx">ACTRN12611000716965</a></p

    Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents

    Get PDF
    Dietary intake during childhood and adolescence is of increasing interest due to its influence on adult health, particularly obesity, cardiovascular disease and diabetes. There is a need to develop and validate dietary assessment methods suitable for large epidemiologic studies of children and adolescents. Limited large scale dietary studies of youth have been undertaken in Australia, due partly to the lack of a suitable dietary intake tool. A self-administered, semi-quantitative food-frequency questionnaire (FFQ), the 'Australian Child and Adolescent Eating Survey' (ACAES), was developed for youth aged 9-16 years. This study evaluated reproducibility and comparative validity of the ACAES FFQ using assisted food records (FRs) as the reference method. The ACAES FFQ was completed twice (FFQ1 and FFQ2) at an interval of 5 months, along with four one-day assisted FRs. Validity was evaluated by comparing the average of the FRs with FFQ2 (n = 113) as well as with the average of FFQ1 and FFQ2 (n = 101). Reproducibility was evaluated by comparing FFQ1 and FFQ2 (n = 101). The two methods were compared using correlations, Kappa statistics and Bland-Altman plots. Correlation coefficients for comparative validity ranged from 0.03 for retinol to 0.56 for magnesium for transformed, energy-adjusted, deattenuated nutrient data, with correlation coefficients greater than 0.40 for total fat, saturated fat, monounsaturated fat, carbohydrate, sugars, riboflavin, vitamin C, folate, beta-carotene, magnesium, calcium and iron. Correlation coefficients for reproducibility ranged from 0.18 for vitamin A to 0.50 for calcium for transformed, energy-adjusted, deattenuated nutrient data. The ACAES FFQ ranked individuals reasonably accurately, with the comparative validity analysis showing that over 50% of participants were classified within one quintile for all nutrients, with only a small percentage grossly misclassified (0-7%). The ACAES FFQ is the first child and adolescent specific FFQ available for ranking the dietary intakes of Australian children and adolescents for a range of nutrients in epidemiologic research and public health interventions

    Marine oils: Complex, confusing, confounded?

    Get PDF
    AbstractMarine oils gained prominence following the report that Greenland Inuits who consumed a high-fat diet rich in long-chain n-3 polyunsaturated fatty acids (PUFAs) also had low rates of cardiovascular disease. Marine n-3 PUFAs have since become a billion dollar industry, which will continue to grow based on current trends. However, recent systematic reviews question the health benefits of marine oil supplements, particularly in the prevention of cardiovascular disease. Marine oils constitute an extremely complex dietary intervention for a number of reasons: i) the many chemical compounds they contain; ii) the many biological processes affected by n-3 PUFAs; iii) their tendency to deteriorate and form potentially toxic primary and secondary oxidation products; and iv) inaccuracy in the labelling of consumer products. These complexities may confound the clinical literature, limiting the ability to make substantive conclusions for some key health outcomes. Thus, there is a pressing need for clinical trials using marine oils whose composition has been independently verified and demonstrated to be minimally oxidised. Without such data, it is premature to conclude that n-3 PUFA rich supplements are ineffective

    Docosahexaenoic acid-rich fish oil supplementation reduces kinase associated with insulin resistance in overweight and obese midlife adults

    Get PDF
    Targeting kinases linked to insulin resistance (IR) and inflammation may help in reducing the risk of type 2 diabetes (T2D) and Alzheimer’s disease (AD) in its early stages. This study aimed to determine whether DHA-rich fish oil supplementation reduces glycogen synthase kinase (GSK-3), which is linked to both IR and AD. Baseline and post-intervention plasma samples from 58 adults with abdominal obesity (Age: 51.7 ± 1.7 years, BMI: 31.9 ± 0.8 kg/m2) were analysed for outcome measures. Participants were allocated to 2 g DHA-rich fish oil capsules (860 mg DHA + 120 mg EPA) (n = 31) or placebo capsules (n = 27) per day for 12 weeks. Compared to placebo, DHA-rich fish oil significantly reduced GSK-3β by −2.3 ± 0.3 ng/mL. An inverse correlation (p \u3c 0.05) was found between baseline insulin and IR and their changes following intervention only in participants with C-reactive protein levels higher than 2.4 mg/L. DHA-rich fish oil reduces GSK-3 and IR, suggesting a potential role of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) in ameliorating AD risk

    Association of plasma neurofilament light chain with glycaemic control and insulin resistance in middle-aged adults

    Get PDF
    Aims: This study aimed to determine the association of plasma neurofilament light (NfL), a marker of neurodegeneration, with diabetes status and glycaemic parameters in people with normal glycaemia (NG), pre-diabetes (PD) and type 2 diabetes (T2D). Methods: Clinical and descriptive data for the diagnostic groups, NG (n=30), PD (n=48) and T2D (n=29), aged between 40 and 75 years were included in this cross-sectional analysis. Plasma NfL levels were analyzed using the ultra-sensitive single-molecule array (Simoa) platform. Results: A positive correlation was evident between plasma NfL and fasting glucose (r = 0.2824; p = 0.0032). Plasma NfL levels were not correlated with fasting insulin and insulin resistance. Plasma Nfl levels were significantly different across the diabetes groups (T2D \u3e PD \u3e NG, p = 0.0046). Post-hoc analysis indicated significantly higher plasma NfL levels in the T2D [12.4 (5.21) pg/mL] group than in the PD [10.2 (4.13) pg/mL] and NG [8.37 (5.65) pg/mL] groups. The relationship between diabetes status and NfL remained significant after adjusting for age, sex, BMI, HOMA-IR and physical activity (adjusted r2 = 0.271, p = 0.035). Conclusions: These results show biomarker evidence of neurodegeneration in adults at risk or with T2D. Larger sample size and longitudinal analysis are required to better understand the application of NfL in people with risk and overt T2D

    Relationship between body composition, inflammation and lung function in overweight and obese asthma

    Get PDF
    Background: The obese-asthma phenotype is not well defined. The aim of this study was to examine both mechanical and inflammatory influences, by comparing lung function with body composition and airway inflammation in overweight and obese asthma. Methods: Overweight and obese (BMI 28-40 kg/m2) adults with asthma (n = 44) completed lung function assessment and underwent full-body dual energy x-ray absorptiometry. Venous blood samples and induced sputum were analysed for inflammatory markers. Results: In females, android and thoracic fat tissue and total body lean tissue were inversely correlated with expiratory reserve volume (ERV). Conversely in males, fat tissue was not correlated with lung function, however there was a positive association between android and thoracic lean tissue and ERV. Lower body (gynoid and leg) lean tissue was positively associated with sputum %neutrophils in females, while leptin was positively associated with android and thoracic fat tissue in males. Conclusions: This study suggests that both body composition and inflammation independently affect lung function, with distinct differences between males and females. Lean tissue exacerbates the obese-asthma phenotype in females and the mechanism responsible for this finding warrants further investigation

    Feasibility of omega-3 fatty acid supplementation as an adjunct therapy for people with chronic obstructive pulmonary disease: study protocol for a randomized controlled trial

    Get PDF
    There is evidence to support the use of supplementation with long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from oily fish or fish oil for the treatment of various inflammatory diseases such as rheumatoid arthritis. Chronic obstructive pulmonary disease (COPD) is a progressive, terminal disease characterized by persistent airflow limitation, lung and systemic inflammation. To date, one randomized controlled trial has been published that assessed the efficacy of LCn-3PUFA in people with this condition. The aim of this article is to discuss the feasibility of conducting a trial to evaluate fish oil supplementation as adjunct therapy in people with COPD.The study is supported by a University of South Australia, Division of Health Sciences grant (DRDG 2011 (round 2))

    Alterations in erythrocyte fatty acid composition in preclinical Alzheimer\u27s disease

    Get PDF
    Brain and blood fatty acids (FA) are altered in Alzheimer’s disease and cognitively impaired individuals, however, FA alterations in the preclinical phase, prior to cognitive impairment have not been investigated previously. The current study therefore evaluated erythrocyte FA in cognitively normal elderly participants aged 65 – 90 years via trans-methylation followed by gas chromatography. The neocortical beta-amyloid load (NAL) measured via positron emission tomography (PET) using ligand 18F-Florbetaben, was employed to categorise participants as low NAL (standard uptake value ratio; SUVR \u3c 1.35, N = 65) and high NAL or preclinical AD (SUVR ≥ 1.35, N = 35) wherein, linear models were employed to compare FA compositions between the two groups. Increased arachidonic acid (AA, p \u3c 0.05) and decreased docosapentaenoic acid (DPA, p \u3c 0.05) were observed in high NAL. To differentiate low from high NAL, the area under the curve (AUC) generated from a ‘base model’ comprising age, gender, APOEε4 and education (AUC = 0.794) was outperformed by base model + AA:DPA (AUC = 0.836). Our findings suggest that specific alterations in erythrocyte FA composition occur very early in the disease pathogenic trajectory, prior to cognitive impairment. As erythrocyte FA levels are reflective of tissue FA, these alterations may provide insight into the pathogenic mechanism(s) of the disease and may highlight potential early diagnostic markers and therapeutic targets
    corecore