2 research outputs found

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Summary of sessions B1/B2 and B2: relativistic astrophysics and numerical relativity

    No full text
    The numerical relativity session at GR18 was dominated by physics results on binary black hole mergers. Several groups can now simulate these from a time when the post-Newtonian equations of motion are still applicable, through several orbits and the merger to the ringdown phase, obtaining plausible gravitational waves at infinity, and showing some evidence of convergence with resolution. The results of different groups roughly agree. This new-won confidence has been used by these groups to begin mapping out the (finite dimensional) initial data space of the problem, with a particular focus on the effect of black hole spins, and the acceleration by gravitational wave recoil to hundreds of km s?1 of the final merged black hole. Other work was presented on a variety of topics, such as evolutions with matter, extreme mass ratio inspirals and technical issues such as gauge choices
    corecore