6 research outputs found

    Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization

    No full text
    Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies

    IFT81, encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype

    Get PDF
    Background: Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. Methods: We screened 1628 individuals with reno-ocular ciliopathies by targeted next-generation sequencing of ciliary candidate genes, including all IFT-B encoding genes. Results: Consequently, we identified a homozygous mutation in IFT81 affecting an obligatory donor splice site in an individual with nephronophthisis and polydactyly. Further, we detected a loss-of-stop mutation with extension of the deduced protein by 10 amino acids in an individual with neuronal ceroid lipofuscinosis-1. This proband presented with retinal dystrophy and brain lesions including cerebellar atrophy, a phenotype to which the IFT81 variant might contribute. Cultured fibroblasts of this latter affected individual showed a significant decrease in ciliated cell abundance compared with controls and increased expression of the transcription factor GLI2 suggesting deranged sonic hedgehog signalling. Conclusions: This work describes identification of mutations of IFT81 in individuals with symptoms consistent with the clinical spectrum of ciliopathies. It might represent the rare case of a core IFT-B complex protein found associated with human disease. Our data further suggest that defects in the IFT-B core are an exceedingly rare finding, probably due to its indispensable role for ciliary assembly in development

    Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion

    No full text
    Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52(-/-) cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms

    WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells.

    No full text
    International audienceMicrolissencephaly is a rare brain malformation characterized by congenital microcephaly and lissencephaly. Microlissencephaly is suspected to result from abnormalities in the proliferation or survival of neural progenitors. Despite the recent identification of six genes involved in microlissencephaly, the pathophysiological basis of this condition remains poorly understood. We performed trio-based whole exome sequencing in seven subjects from five non-consanguineous families who presented with either microcephaly or microlissencephaly. This led to the identification of compound heterozygous mutations in WDR81, a gene previously associated with cerebellar ataxia, intellectual disability and quadrupedal locomotion. Patient phenotypes ranged from severe microcephaly with extremely reduced gyration with pontocerebellar hypoplasia to moderate microcephaly with cerebellar atrophy. In patient fibroblast cells, WDR81 mutations were associated with increased mitotic index and delayed prometaphase/metaphase transition. Similarly, in vivo, we showed that knockdown of the WDR81 orthologue in Drosophila led to increased mitotic index of neural stem cells with delayed mitotic progression. In summary, we highlight the broad phenotypic spectrum of WDR81-related brain malformations, which include microcephaly with moderate to extremely reduced gyration and cerebellar anomalies. Our results suggest that WDR81 might have a role in mitosis that is conserved between Drosophila and humans

    IRAP+ endosomes restrict TLR9 activation and signaling

    Get PDF
    International audienceThe retention of intracellular Toll-like receptors (TLRs) in the endoplasmic reticulum prevents their activation under basal conditions. TLR9 is activated by sensing ligands in specific endosomal-lysosomal compartments. Here we identified IRAP+ endosomes as major cellular compartments for the early steps of TLR9 activation in dendritic cells (DCs). Both TLR9 and its ligand, the dinucleotide CpG, were present as cargo in IRAP+ endosomes. In the absence of the aminopeptidase IRAP, the trafficking of CpG and TLR9 to lysosomes and signaling via TLR9 were enhanced in DCs and in mice following bacterial infection. IRAP stabilized CpG-containing endosomes by interacting with the actin-nucleation factor FHOD4, which slowed the trafficking of TLR9 toward lysosomes. Thus, endosomal retention of TLR9 via the interaction of IRAP with the actin cytoskeleton is a mechanism that prevents hyper-activation of TLR9 in DCs
    corecore