18 research outputs found
Prediction of suicidal ideation and attempt in 9 and 10 year-old children using transdiagnostic risk features
The objective of the current study was to build predictive models for suicidal ideation in a sample of children aged 9â10 using features previously implicated in risk among older adolescent and adult populations. This case-control analysis utilized baseline data from the Adolescent Brain and Cognitive Development (ABCD) Study, collected from 21 research sites across the United States (N = 11,369). Several regression and ensemble learning models were compared on their ability to classify individuals with suicidal ideation and/or attempt from healthy controls, as assessed by the Kiddie Schedule for Affective Disorders and SchizophreniaâPresent and Lifetime Version. When comparing control participants (mean age: 9.92±0.62 years; 4944 girls [49%]) to participants with suicidal ideation (mean age: 9.89±0.63 years; 451 girls [40%]), both logistic regression with feature selection and elastic net without feature selection predicted suicidal ideation with an AUC of 0.70 (CI 95%: 0.70â0.71). The random forest with feature selection trained to predict suicidal ideation predicted a holdout set of children with a history of suicidal ideation and attempt (mean age: 9.96±0.62 years; 79 girls [41%]) from controls with an AUC of 0.77 (CI 95%: 0.76â0.77). Important features from these models included feelings of loneliness and worthlessness, impulsivity, prodromal psychosis symptoms, and behavioral problems. This investigation provided an unprecedented opportunity to identify suicide risk in youth. The use of machine learning to examine a large number of predictors spanning a variety of domains provides novel insight into transdiagnostic factors important for risk classification
Social democracy, embeddedness and decommodification: On the conceptual innovations and intellectual affiliations of Karl Polanyi
Of the several debates that revolve around the work of the economic historian and political economist Karl Polanyi, one that continues to exercise minds concerns his analysis of, and political attitudes toward, post-war capitalism and the welfare state. Simplified a little, it is a debate with two sides. To borrow IvĂĄn SzelĂ©nyi's terms, one side constructs a âhardâ Karl Polanyi, the other a âsoftâ one. The former advocated a socialist mixed economy dominated by redistributive mechanisms. He was a radical socialist for whom the market should never be the dominant mechanism of economic coordination. His âsoftâ alter ego insisted that the market system remain essentially intact but be complemented by redistributive mechanisms. The âdouble movementâ â the central thesis of his âGreat Transformationâ â acts, in this reading, as a self-correcting mechanism that moderates the excesses of market fundamentalism; its author was positioned within the social-democratic mainstream for which the only realistic desirable goal is a regulated form of capitalism. In terms of textual evidence there is much to be said for both interpretations. In this article I suggest a different approach, one that focuses upon the meaning of Polanyi's concepts in relation to their socio-political and intellectual environment
Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009â2013): the Thames Initiative research platform
The River Thames and 15 of its major tributaries have been monitored at weekly intervals since March 2009. Monitored determinands include major nutrient fractions, anions, cations, metals, pH, alkalinity,
and chlorophyll a and are linked to mean daily river flows at each site. This catchment-wide biogeochemical
monitoring platform captures changes in the water quality of the Thames basin during a period of rapid change, related to increasing pressures (due to a rapidly growing human population, increasing water demand and climate change) and improvements in sewage treatment processes and agricultural practices. The platform provides the research community with a valuable data and modelling resource for furthering our understanding of pollution sources and dynamics, as well as interactions between water quality and aquatic ecology. Combining Thames Initiative data with previous (non-continuous) monitoring data sets from many common study sites, dating back to 1997, has shown that there have been major reductions in phosphorus concentrations at most sites, occurring at low river flow, and these are principally due to reduced loadings from sewage treatment works (STWs). This ongoing monitoring programme will provide the vital underpinning environmental data required to best manage
this vital drinking water resource, which is key for the sustainability of the city of London and the wider UK economy. The Thames Initiative data set is freely available from the Centre for Ecology and Hydrologyâs (CEH)Environmental Information Data Centre at https://doi.org/10.5285/e4c300b1-8bc3-4df2-b23a-e72e67eef2fd
Recommended from our members
Advancing stem cell technologies for conservation of wildlife biodiversity.
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species
Longitudinal ophthalmic findings in a child with Helsmoortel-Van der Aa Syndrome
Purpose: We present the first detailed ophthalmic description of a child with Helsmoortel-Van der Aa Syndrome (HVDAS), including longitudinal follow-up and analysis. Observations: After extensive workup, a young child with poor visual behavior, hypotonic cerebral palsy, intellectual disability, and global developmental delay was found to have a heterozygous de novo mutation in the ADNP gene and diagnosed with HVDAS. Ophthalmic findings were remarkable for progressive nystagmus, macular pigment mottling, mild foveal hypoplasia with abnormal macular laminations, persistent rod dysfunction with electronegative waveform, and progressive cone degeneration. Conclusions and importance: Patients with HVDAS are known to have abnormal visual behavior due to refractive or cortical impairment. However, we present the first description, to our knowledge, of an association with retinal mal-development and degeneration. Thus, patients with HVDAS should be referred for ophthalmic genetics evaluation, and HVDAS should be on the differential diagnosis for young children with global developmental delay who present with nystagmus, rod and cone dysfunction with electronegative waveform, and relative lack of severe structural degeneration on optical coherence tomography. Keywords: Helsmoortel-Van der Aa Syndrome, HVDAS, Activity-dependent neuroprotective protein, ADNP, Nystagmus, Retinal degeneration, Electronegative waveform, Optical coherence tomograph
Associations between alcohol use and sex-specific maturation of subcortical gray matter morphometry from adolescence to adulthood: Replication across two longitudinal samples
Subcortical brain morphometry matures across adolescence and young adulthood, a time when many youth engage in escalating levels of alcohol use. Initial cross-sectional studies have shown alcohol use is associated with altered subcortical morphometry. However, longitudinal evidence of sex-specific neuromaturation and associations with alcohol use remains limited. This project used generalized additive mixed models to examine sex-specific development of subcortical volumes and associations with recent alcohol use, using 7 longitudinal waves (n = 804, 51% female, ages 12â21 at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). A second, independent, longitudinal dataset, with up to four waves of data (n = 467, 43% female, ages 10â18 at baseline), was used to assess replicability. Significant, replicable non-linear normative volumetric changes with age were evident in the caudate, putamen, thalamus, pallidum, amygdala and hippocampus. Significant, replicable negative associations between subcortical volume and alcohol use were found in the hippocampus in all youth, and the caudate and thalamus in female but not male youth, with significant interactions present in the caudate, thalamus and putamen. Findings suggest a structural vulnerability to alcohol use, or a predisposition to drink alcohol based on brain structure, with female youth potentially showing heightened risk, compared to male youth
Recommended from our members
Associations between alcohol use and sex-specific maturation of subcortical gray matter morphometry from adolescence to adulthood: Replication across two longitudinal samples
Subcortical brain morphometry matures across adolescence and young adulthood, a time when many youth engage in escalating levels of alcohol use. Initial cross-sectional studies have shown alcohol use is associated with altered subcortical morphometry. However, longitudinal evidence of sex-specific neuromaturation and associations with alcohol use remains limited. This project used generalized additive mixed models to examine sex-specific development of subcortical volumes and associations with recent alcohol use, using 7 longitudinal waves (n = 804, 51% female, ages 12-21 at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). A second, independent, longitudinal dataset, with up to four waves of data (n = 467, 43% female, ages 10-18 at baseline), was used to assess replicability. Significant, replicable non-linear normative volumetric changes with age were evident in the caudate, putamen, thalamus, pallidum, amygdala and hippocampus. Significant, replicable negative associations between subcortical volume and alcohol use were found in the hippocampus in all youth, and the caudate and thalamus in female but not male youth, with significant interactions present in the caudate, thalamus and putamen. Findings suggest a structural vulnerability to alcohol use, or a predisposition to drink alcohol based on brain structure, with female youth potentially showing heightened risk, compared to male youth
Identifying priorities for nutrient mitigation using river concentration-flow relationships: the Thames basin, UK
The introduction of tertiary treatment to many of the sewage treatment works (STW) across the Thames basin in southern England has resulted in major reductions in river phosphorus (P) concentrations. Despite this, excessive phytoplankton growth is still a problem in the River Thames and many of its tributaries. There is an urgent need to determine if future resources should focus on P removal from the remaining STW, or on reducing agricultural inputs, to improve ecological status. Nutrient concentration-flow relationships for monitoring sites along the River Thames and 15 of its major tributaries were used to estimate the relative inputs of phosphorus and nitrogen from continuous (sewage point sources) and rain-related (diffuse and within-channel) sources, using the Load Apportionment Model (LAM). The model showed that diffuse sources and remobilisation of within-channel phosphorus contributed the majority of the annual P load at all monitoring sites. However, the majority of rivers in the Thames basin are still dominated by STW P inputs during the ecologically-sensitive spring-autumn growing season. Therefore, further STW improvements would be the most effective way of improving water quality and ecological status along the length of the River Thames, and 12 of the 15 tributaries. The LAM outputs were in agreement with other indicators of sewage input, such as sewered population density, phosphorus speciation and boron concentration. The majority of N inputs were from diffuse sources, and LAM suggests that introducing mitigation measures to reduce inputs from agriculture and groundwater would be most appropriate for all but one monitoring site in this study. The utilisation of nutrient concentration-flow data and LAM provide a simple, rapid and effective screening tool for determining nutrient sources and most effective mitigation options