6 research outputs found

    On the nature of spatiotemporal light bullets in bulk Kerr media

    Get PDF
    We present a detailed experimental investigation, which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Sub-diffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of spatiotemporal energy density flux that exhibits the same features as stationary, polychromatic Bessel beam, thus highlighting the physical nature of the light bullets

    Filamentation and Pulse Self-compression in the Anomalous Dispersion Region of Glasses

    No full text
    International audienceThe propagation of near-infrared ultra-short laser pulses in the regime of anomalous dispersion of transparent solids is associated with a host of self-induced effects including a significant spectral broadening extending from the ultraviolet into the infrared region, pulse self-compression down to few-cycle pulse durations, free and driven third harmonic generation, conical emission and the formation of stable filaments over several cm showing the emergence of conical light bullets. We review measurements performed in different experimental conditions and results of numerical simulations of unidirectional propagation models showing that the interpretation of all these phenomena proceed from the formation of non-spreading conical light bullets during filamentation

    Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    No full text
    International audienceWe present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse

    Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium

    No full text
    International audienceWe report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail
    corecore