3,212 research outputs found

    Effects of the Zebra Mussel on Nitrogen Dynamics and the Microbial Community at the Sediment-Water Interface

    Get PDF
    A flow-through experiment was conducted on intact cores of sediments from Saginaw Bay, Lake Huron, to examine how trophic interactions between filter-feeding bivalve mussels and microbial populations could affect nitrogen dynamics at the sediment-water interface. The zebra mussels used in this experiment removed a large proportion of protozoa and phytoplankton from the overlying water, particularly heterotrophic nanoplankton (up to 82%), while bacterial populations showed less change. A 3-fold decrease in the protozoan to bacterial carbon ratio corresponded to a 2.5-fold increase in relative ammonium removal rates as estimated from the dark loss of N-15-ammonium. Excretion by the bivalves also increased net ammonium flux to the water, thus elevating the total calculated areal ammonium removal rates to about B-fold over rates observed in the control treatment. These data suggest that filter-feeding bivalves may significantly affect nitrogen transformation rates near the sediment-water interface by excreting ammonium and altering the microbial food web structure at the sediment-water interface

    The direct role of enzyme hydrolysis on ammonium regeneration rates in estuarine sediments

    Get PDF
    Benthic ammonium (NH4 +) regeneration in coastal marine sediments has a fundamental role in nitrogen (N) cycling and N supply to primary producers. Nitrogen regeneration involves benthic microbial mineralization of organic-N, which, in turn, depends on protein hydrolysis. These processes were examined in Aransas Bay (Texas, USA) sediments by monitoring NH4 + evolution as a function of enzyme activity in controlled sediment slurries. Casein and tannic acid were added to evaluate the direct role of aminopeptidase on NH4 + production and the effects of a polyphenolic enzyme inhibitor, respectively. Casein additions increased the NH4 + concentration from 19 ± 0.3 to 737 ± 150 ΌM in 120 h, a final concentration 4.3-fold higher than that of control samples and 2.9-fold higher than that of samples with casein and tannic added together. Lower NH4 + concentration in samples with tannic acid indicated that inhibiting aminopeptidase activity reduced NH4 + production rates. The concentration of the regenerated NH4 + related directly to aminopeptidase activity in controls (r = 0.86, p \u3c 0.01), casein-enriched (r = 0.89, p \u3c 0.01), and casein plus polyphenol treatments (r = 0.71, p \u3c 0.01) over the first 72 h. The results demonstrate the importance of aminopeptidase in regenerating NH4 + in sediments and provide insights about mechanisms of enzyme hydrolysis and NH4 + fluxes in estuarine sediments

    Effects of natural light on nitrogen cycling rates in the Mississippi River plume

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110596/1/lno19974220273.pd

    Nitrogen cycling rates and light effects in tropical Lake Maracaibo, Venezuela

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109860/1/lno19984381814.pd

    Effects of High-Molecular-Weight Dissolved Organic Matter on Nitrogen Dynamics in the Mississippi River Plume

    Get PDF
    The dynamics of N and its interactions with labile dissolved organic C (DOC), bacteria, and phytoplankton were studied to determine potential effects of dissolved organic matter (DOM) and light on N dynamics in surface waters of the Mississippi River (USA) plume in the Gulf of Mexico. Bacterial uptake of added labeled N compounds ( 15NH4+ or 15N-labeled dissolved free amino acids. DFAA) was stimulated more by high-molecular-weight (HMW, \u3el kDa) DOM than by low-molecular-weight (LMW, \u3c l kDa) DOM. An index that inversely indicated the presence of labile DOC was defined as the fraction of assimilated Amino acid-15N that was Recovered as 15N -Ammonium (ANRA), following the additions of high-levels (4 ”M) of 15N -DFAA. ANRA ratios were high in the absence of other available carbon sources because heterotrophic bacteria were forced to use the added amino acids as a carbon source for respiration rather than as a nutrient source for biomass formation. In dynamic light/dark experiments, conducted with in situ populations of organisms, uptake rates of added 15NH4+ were significantly enhanced both by the presence of light and by the addition of HMW DOM. Uptake rates of added 15N -labeled DFAA were increased by the addition of HMW DOM but not by light. ANRA ratios were consistently lower in the presence of added HMW DOM than in controls. Added HMW DOM thus appeared to stimulate the incorporation of assimilated DFAA into bacterial biomass. Bacterial growth rates were relatively high in both light and dark bottles with DFAA additions and in light bottles with HMW DOM plus NH4+ additions, but they remained comparatively low in dark bottles with added NH4+ These results are consistent with the idea that bacterial N dynamics in these euphotic waters may be tightly coupled to photosynthetic activities over short time scales

    It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems

    Get PDF
    Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum

    Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients

    Get PDF
    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change

    Infection-dependent phenotypes in MHC-congenic mice are not due to MHC: can we trust congenic animals?

    Get PDF
    BACKGROUND: Congenic strains of mice are assumed to differ only at a single gene or region of the genome. These mice have great importance in evaluating the function of genes. However, their utility depends on the maintenance of this true congenic nature. Although, accumulating evidence suggests that congenic strains suffer genetic divergence that could compromise interpretation of experimental results, this problem is usually ignored. During coinfection studies with Salmonella typhimurium and Theiler's murine encephalomyelitis virus (TMEV) in major histocompatibility complex (MHC)-congenic mice, we conducted the proper F(2 )controls and discovered significant differences between these F(2 )animals and MHC-genotype-matched P(0 )and F(1 )animals in weight gain and pathogen load. To systematically evaluate the apparent non-MHC differences in these mice, we infected all three generations (P(0), F(1 )and F(2)) for 5 MHC genotypes (b/b, b/q and q/q as well as d/d, d/q, and q/q) with Salmonella and TMEV. RESULTS: Infected P(0 )MHC q/q congenic homozygotes lost significantly more weight (p = 0.02) and had significantly higher Salmonella (p < 0.01) and TMEV (p = 0.02) titers than the infected F(2 )q/q homozygotes. Neither weight nor pathogen load differences were present in sham-infected controls. CONCLUSIONS: These data suggest that these strains differ for genes other than those in the MHC congenic region. The most likely explanation is that deleterious recessive mutations affecting response to infection have accumulated in the more than 40 years that this B10.Q-H-2(q )MHC-congenic strain has been separated from its B10-H-2(b )parental strain. During typical experiments with congenic strains, the phenotypes of these accumulated mutations will be falsely ascribed to the congenic gene(s). This problem likely affects any strains separated for appreciable time and while usually ignored, can be avoided with the use of F(2 )segregants

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Full text link
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.Comment: 55 pages, 10 figure
    • 

    corecore