6,985 research outputs found

    Evaluation of heating effects on atoms trapped in an optical trap

    Get PDF
    We solve a stochastic master equation based on the theory of Savard et al. [T. A. Savard. K. M. O'Hara, and J. E. Thomas, Phys, Rev. A 56, R1095 (1997)] for heating arising from fluctuations in the trapping laser intensity. We compare with recent experiments of Ye et al. [J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999)], and find good agreement with the experimental measurements of the distribution of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of the trapped atom, rather than the mean heating rate, which is a very much smaller effect

    Diagnosis of antiphospholipid syndrome in routine clinical practice.

    Get PDF
    The updated international consensus criteria for definite antiphospholipid syndrome (APS) are useful for scientific clinical studies. However, there remains a need for diagnostic criteria for routine clinical use. We audited the results of routine antiphospholipid antibodies (aPLs) in a cohort of 193 consecutive patients with aPL positivity-based testing for lupus anticoagulant (LA), IgG and IgM anticardiolipin (aCL) and anti-ß(2)glycoprotein-1 antibodies (aß(2)GPI). Medium/high-titre aCL/aβ(2)GPI was defined as >99th percentile. Low-titre aCL/aβ(2)GPI positivity (>95(th )< 99(th) percentile) was considered positive for obstetric but not for thrombotic APS. One hundred of the 145 patients fulfilled both clinical and laboratory criteria for definite APS. Twenty-six women with purely obstetric APS had persistent low-titre aCL and/or aβ(2)GPI. With the inclusion of these patients, 126 of the 145 patients were considered to have APS. Sixty-seven out of 126 patients were LA-negative, of whom 12 had aCL only, 37 had aβ(2)GPI only and 18 positive were for both. The omission of aCL or aβ(2)GPI testing from investigation of APS would have led to a failure to diagnose APS in 9.5% and 29.4% of patients, respectively. Our data suggest that LA, aCL and aβ(2)GPI testing are all required for the accurate diagnosis of APS and that low-titre antibodies should be included in the diagnosis of obstetric APS

    Stochastic mean-field dynamics for fermions in the weak coupling limit

    Full text link
    Assuming that the effect of the residual interaction beyond mean-field is weak and has a short memory time, two approximate treatments of correlation in fermionic systems by means of Markovian quantum jump are presented. A simplified scenario for the introduction of fluctuations beyond mean-field is first presented. In this theory, part of the quantum correlations between the residual interaction and the one-body density matrix are neglected and jumps occur between many-body densities formed of pairs of states D=∣Φa><Φb∣/D=| \Phi_a > < \Phi_b |/ where ∣Φa>| \Phi_a > and ∣Φb>| \Phi_b > are antisymmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40^{40}Ca nucleus under the influence of a statistical ensemble of two-body contact interaction. This framework is however too simplistic to account for both fluctuation and dissipation. In the second part of this work, an alternative quantum jump method is obtained without making the approximation on quantum correlations. Restricting to two particles-two holes residual interaction, the evolution of the one-body density matrix of a correlated system is transformed into a Lindblad equation. The associated dissipative dynamics can be simulated by quantum jumps between densities written as D=∣Φ>D = | \Phi > is a normalized Slater determinant. The associated stochastic Schroedinger equation for single-particle wave-functions is given.Comment: Enlarged version, 10 pages, 2 figure

    Quantum turbulence and correlations in Bose-Einstein condensate collisions

    Full text link
    We investigate numerically simulated collisions between experimentally realistic Bose-Einstein condensate wavepackets, within a regime where highly populated scattering haloes are formed. The theoretical basis for this work is the truncated Wigner method, for which we present a detailed derivation, paying particular attention to its validity regime for colliding condensates. This paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both single-trajectory solutions, which reveal the presence of quantum turbulence in the scattering halo, and ensembles of trajectories, which we use to calculate quantum-mechanical correlation functions of the field

    Decoherence and the conditions for the classical control of quantum systems

    Full text link
    We find the conditions for one quantum system to function as a classical controller of another quantum system: the controller must be an open system and rapidly diagonalised in the basis of the controller variable that is coupled to the controlled system. This causes decoherence in the controlled system that can be made small if the rate of diagonalisation is fast. We give a detailed example based on the quantum optomechanical control of a mechanical resonator. The resulting equations are similar in structure to recently proposed models for consistently combining quantum and classical stochastic dynamics

    Bogoliubov dynamics of condensate collisions using the positive-P representation

    Full text link
    We formulate the time-dependent Bogoliubov dynamics of colliding Bose-Einstein condensates in terms of a positive-P representation of the Bogoliubov field. We obtain stochastic evolution equations for the field which converge to the full Bogoliubov description as the number of realisations grows. The numerical effort grows linearly with the size of the computational lattice. We benchmark the efficiency and accuracy of our description against Wigner distribution and exact positive-P methods. We consider its regime of applicability, and show that it is the most efficient method in the common situation - when the total particle number in the system is insufficient for a truncated Wigner treatment.Comment: 9 pages. 5 figure

    Dynamical creation of entanglement by homodyne-mediated feedback

    Get PDF
    For two two-level atoms coupled to a single-mode cavity field that is driven and heavily damped, the steady-state can be entangled by shining an un-modulated driving laser on the system [S.Schneider, G. J. Milburn Phys. Rev A 65, 042107, 2002]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the driving laser is modulated by the homodyne photocurrent derived from the cavity output. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.Comment: 8 page

    Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap

    Full text link
    We present a detailed theoretical analysis of micro-motion in a time-averaged orbiting potential trap. Our treatment is based on the Gross-Pitaevskii equation, with the full time dependent behaviour of the trap systematically approximated to reduce the trapping potential to its dominant terms. We show that within some well specified approximations, the dynamic trap has solitary-wave solutions, and we identify a moving frame of reference which provides the most natural description of the system. In that frame eigenstates of the time-averaged orbiting potential trap can be found, all of which must be solitary-wave solutions with identical, circular centre of mass motion in the lab frame. The validity regime for our treatment is carefully defined, and is shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure

    Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation

    Full text link
    A second order phase transition induced by a rapid quench can lock out topological defects with densities far exceeding their equilibrium expectation values. We use quantum kinetic theory to show that this mechanism, originally postulated in the cosmological context, and analysed so far only on the mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein condensates of simple topology, or of winding number in toroidal condensates.Comment: 4 pages, 2 figures; misprint correcte
    • …
    corecore