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For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady
state can be entangled by resonantly driving the sy$@nSchneider and G. J. Milburn, Phys. Rev.65,
042107 (2002]. We present a scheme to significantly increase the steady-state entanglement by using
homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of
which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits.
Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system
and the coherent evolution of individual qubits. We present the properties of the entangled states using the
SQO3) Q function.
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[. INTRODUCTION considered the steady-state entanglement of a system where

The deeper ways that quantum information differs fromthe qubits are ions coupled_ to a center-of-mass vibrat_ional

classical information involve the properties, implications mode. In this baperwe .con5|derthe.cas.e wher_e the qubits are
: 'coupled to a single cavity mode which is heavily damped so

and use of quantum entanglement. Entangled states are 'm%\rﬁ to enable a collective measurement of the qubits, which is

esting because they exhibit correlations that have no cIas;sithe basis for the feedback. We find an improved amount of
analog. Any two systems described by a pure state that carn- ) P

. entanglement over that of Reff15], but at the cost of a
not be expressed as a direct prodpp=|A)® |B) are en- , :
tangled(nonseparable For a two-qubit System there are four reduced purity. Most quantum entanglement algorithms are

: designed for ideal pure states. However, it is usually very
mutually orthogonal Bell states, which may be denoted hard to create, maintain, and manipulate pure entangled

1 states under realistic conditions, simply because any system
|#5)ae= =008 % [1D)ap), is subject to the interactions with its external environment.
V2 Therefore it immediately raises the question of whether the
entanglement can be distilled and used as a resource for
o 1 some quantum communication or computation task.
|¢F>AB‘E(|01>ABi |10)ne), 1) The paper is organized as follows. The model and the
corresponding master equation together with the derivation
whereA andB are two subsystems, an@d) and|1) are two  of the adiabatic elimination of the cavity mode for a two-
orthogonal states that could represent the atomic ground arglibit system are analyzed and the steady-state solution is
excited state, respectively. presented in Sec. Il. The entanglement measures and the re-
Quantum entanglement is a subject of intensive study bdationship between purity and entanglement are analyzed in
cause it is useful and frequently essential for quantum teleSec. Ill. In Sec. IV, we investigate the behavior of tQe
portation[1-3], quantum cryptographj4,5], quantum dense distribution function and the density matrix in order to obtain
coding[3], and quantum computatidi,7]. Also, entangled information about the entangled states. We discuss our re-
atoms can be used to improve frequency stand&@fShus  sults in the concluding Sec. V.
one of the increasing interests in this context is to find ways
to generate the right type of entanglement as well as possible
[9]. There are a number of measures, like the concurrence
[10], entanglement of formatiofl0], entanglement of distil- A quantum computer requires that a setNftwo-state
lation [9,11], relative entropy of entanglemeni2], and systems can be prepared in an arbitrary superposition state.
negativity[13,14], that have been proposed in recent yearsEach of these systems is said to encode a qubit, as distinct
for the purpose of quantifying the amount of entanglement.from the single bit encoded in a classical two state system.
In this paper we address the question: what is the maxi- We consider the case where two qubits are coupled to a
mum amount of steady-state entanglement that can be gesingle cavity mode that is driven and heavily damped. The
erated in a system consisting of two two-level atqopsbity  two qubits are coupled to the cavity mode, and the damping
collectively damped, with the output being measured and fedrom the output of the cavity is subjected to a homodyne
back to control the system state? This question follows natumeasurement with a subsequent feedback to the cavity. Our
rally from the study of Schneider and Milbufd5] which  primary goal of feedback control in this paper is to demon-

Il. MODEL AND MASTER EQUATION

1050-2947/2005/7%)/0423099)/$23.00 042309-1 ©2005 The American Physical Society


https://core.ac.uk/display/15008332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WANG, WISEMAN, AND MILBURN PHYSICAL REVIEW A 71, 042309(2005

duce the results in Ref15] and show that one can increase
the steady-state entanglement by using feedback modulation
of the laser that drives the cavity mode.

It is assumed that that the laser interacts with the two
atoms simultaneously, forcing each atom to undergo Rabi
oscillations at the same frequency and phase. We can thus
define the total angular momentum operators for the two
qubits:

1(t)
JF=0i+05 (2

=g £idy, 3
where
0= oy tioy. (4)

In terms of these operators, the cavity-atom interaction
Hamiltonian is

FIG. 1. Diagram of the experimental apparatus. The laser beam R R ~
is split to produce both the local oscillatBrand the fieldag which H= 9[\]‘b+ +J'b], (5)
is modulated using the homodyne currdit) derived from the 2

damped cavity. where here the annihilation operator describes the cavity

. ) mode andj is the coupling constant between the qubits and
strate the ability of feedback control to increase steady-state cayity. Since this is symmetric in the atoms, it is natural

entanglement by counteracting the effects of both damping, ,se the angular momentum states to describe the two two-
and the measurement back-action on the system. The histojy,e| atoms. The most interesting dynamics occurs injthe

of feedback control in open quantum systems goes back 0 subspace. In terms of the individual atomic levels, the
the 1980s with the work of Yamamoto and co-workEt], i ee states fof=1 are

and Shapiro and co-workef&7]. Their objective was to ex-

plain the observation of fluctuations in a closed-loop photo- 1

current. They did this using quantum Langevin equations |2 =€1/€2, |2>=E(|g>1|e>2+|e>1|g>2), 13) =19)119)>-

(stochastic Heisenberg equations for the system opeyators

and also semiclassical techniques. The latter approach was (6)

r_nade fully quantum mechanical by Plimak. For systems withrhe fourth state, i.e., thg=0 subspace, is

linear dynamics, all of these approaches, and the quantum

trajectory approach of Ref§18,20, are equally easy to use 1

to find analytical solutions. The advantage of Wiseman and V=0 = E(|g>1|e>2_ [©)1/9)2)- (7)

Milburn’s (quantum trajectoryapproach to quantum control

via feedback is for systems with nonlinear dynamics, as wd his latter subspace will not change under any of the trans-

will discuss in this paper. formations we perform, as will be seen below when we ana-
To obtain a master equation for the two-qubit system, wdyze the adiabatic elimination of the cavity mode.

follow the analysis of Schneider and Milburn’s pap#&f] for

the steady state of a systg9] of two qubits interacting

simultaneously with a driving laser. They have shown that

the steady state is entangled. In this work, we expand their For simplicity in explanation of homodyne detection, let

analysis to include feedback modulation of the amplitude oIS now consider a system with a single two-level atom and

the driving laser. subject the atom to homodyne detection. We assume that all
A schematic diagram of the apparatus is shown in Fig. 10f the damping from the cavity is collected and turned into a

To ensure that the two atoms see the same phase and ampiam. Ignoring the vacuum fluctuations in the field, the an-

tude of the cavity mode, we need to locate them at points ofihilation operator for this beam isyo, normalized so that

the standing wave in which the two atoms are separated bie mean intensity(o o) is equal to the number of photons

an integer number of wavelengths. The dipole-dipole interper unit time in the beam. This beam then enters one port of

action between the atoms can thus be ignored in the followa 50:50 beam splitter, while a strong local oscillagoenters

ing calculation. We assume a strong couplinbetween the the other. To ensure that this local oscillator has a fixed phase

atoms and the cavity mode. The fact that the coupling is theelationship with the driving laser used in the measurement,

same for both atoms means that they are indistinguishablé. would be natural to utilize the same coherent light field

This leads to interference in their damping via the cavity, assource both as the driving laser and as the local oscillator in

we shall see. Such a proposed approach can be realized éke homodyne detection. This homodyne detection arrange-

perimentally in a cavity QED system. In this paper we repro-ment is as shown in Fig. 1.

A. Homodyne detection
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Again ignoring vacuum fluctuations, the two field opera- behavior is slaved to the driving, so it will then be adiabati-

tors for the light exiting the beam splittds; andb,, are cally eliminated[15,22,23 in our first calculation, resulting
il ko1 /5 in a master equation followed by the density operagipr
b =[Vyo = (= D'BIN2. (8) wherep only includes the two qubits.
When these two fields are detected, the two photocurrents The complete master equation describing the system
produced have means pumped by an unmodulated driving laser, including the cav-

o _ _ ity mode, is described by a density operaiogiven as fol-
L= (B = (- D"(\yBo" +NyoB') + yalo)2.  (9)  lows:
The middle two terms represent the interference betweenthe . 1 N O
system and the local oscillator. w=- Ea[b‘ b',w] - 'E[J b*+J'b,w] + y,Dlo1]w
Equation(9) gives only the mean photocurrent. In an in-
dividual run of the experiment for a system, what is recorded + y,D[ 03] + y,D[b]w. (14)

is not the mean photocurrent, but the instantaneous photocu,qere the annihilation operatotsdescribe the cavity mode,

rent. This photocurrent will vary stochastically from one runui, 72 and y, are the coefficients of damping for the two

to the next, because of the irreduqible randomnegs in t.h ubits andb mode, respectivelyD is a superoperator defined
quantum measurement process. This randomness is not juzl - prAJg= ABAT-{A'A,B}/2 for imeversible evolution.
noise, however. It is correlated with the evolution of the.l.he cavity mode is heavily pumped and damped.

system and thus tells the experimenter something about the The adiabatic elimination of cavity mode is done first by

state of the system. The stochastic evolution of the state Oéisplacing the density operatas, and the master equation
the system conditioned by the measurement record is called scribing its evolution, to zerd in the mode. We assume

quantum trajectory [20]. Of course, the master equation Is v, ¢ Y is sufficiently large that the state stays close to an
§t||| opeygd on average, SO t.he set of possible quantum trae—quilibrium coherent state with amplitude
jectories is called an unravelling of the master equaltzij.
It is the conditioning of the system state by the photocurrent = alyp. (15)
record that allows feedback control the system state at th
quantum level.

The ideal limit of homodyne detection is when the local D, = ext" D (16)
oscillator amplitude goes to infinity, which in practical terms
meanjﬁ|2> v. In this limit, the rates of the photodetections is used to carry out this transformation. The new density
go to infinity, and thus each photodetector produces a corPperator isv=Dy(-u) wDy(). Applying this operation to the
tinuous photocurrent with white noise. For our purposes th@riginal master equation in Eq14) gives the new master
only relevant quantity, suitably normalized, is the differenceequation forv in which theb mode is of zero average am-
between the two photocurrert$8,20, plitude. This is

_Il(t)_|2(t)_ [, —id id = _'g + -ht
I(t)—T—w(e ol +d%a) () + &1). (10 v=Ly=i [T+ 707, v] + %, Dlb]y 1

A number of aspects of Eq10) need to be explained. in which all the terms involving only the qubits in the super-
First, ®=argp, the phase of the local oscillatqdefined operatorL defined as
relative to the driving fieltl Here we setb=0. Of course, all ga
that really matters here is the relationship between the driv-  Lv=-i=—[(J"+J),v] + y,D[o]v + v,D[ o ]v.
ing phase and the local oscillator phase, not the absolute 27
phase of either. Second, the subscdptheans conditioned (18)
and refers to the fact that if one is making a homodyne mea-

surement then this yields information about the system, Since the amplitude of mode is small, a partial expan-

Hence any system averages will be conditioned on the preS—LO? of theéienslltybmatrw'lndterr?st of thetl)l mﬂdf numbetr)
vious photocurrent record. Third, the final terft) repre- states need only be carried out fo small photon numbers.

‘Iahe displacement operator

sents Gaussian white noise, so that Therefore
&t)ydt=dW (), (12) v = po|0XO[ + (po| IO + H.C) + po 11| + (p3]2)(0[ + H.c)
3
an infinitesimal Wiener increment defined 1] +O), (19)
[dW()]? = dt (12) wherek=g/y, is a very small number an@) is the cavity
' vacuum state. In this paper, the parametersand A are
E[dW(1)] =0 (13) scaled in units of the damping rate All other parameters

are dimensionless. This is substituted into the master equa-
) S ) tion Eq.(17) which is expanded and terms multiplying equal
B. Adiabatic elimination of the cavity mode sets ofb mode number projectors are gathered together to get
Let us now come back to the two-qubit system. The cavitya set of four equations. Terms of greater than second order
mode is uninteresting as for the high levels of damping itsare neglected. These equations are
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o g, e
po—ﬁpo—lz[J p1=p1d 1+ vpp2,

. g [y ’ -2 1 Y
p1= Loy =i [Ipo+v23"p," = 37p3] - _ZEPL

+

. .g
p2=Lpy= 'E[J+P1 = p13"%] = o0,

sy ’ g [ 1- ’
p2=Lp; = |§[\’2~] p1l = Ypp2- (20)

Now we make the assumption that bgth=0 andp;=0 so
that by using the second and fourth of E20), the values of
p1 andp; are found to be

—ig. _
p1=—1J po—Jpal,
Yo

p2=7 I, (21)
V2%
wherep;=0(g/ ) ande:O(gzlyp). These are then substi-
tuted into the first and third equation of set E80) which
become

9

5 [J73 o+ pod™J™ = I T pp = pp" 1+ ypp2,
Yo

po=Lpo~
. o
p2=Lpy+ 7[J_POJ+ = I 0] = Ypp2- (22)
P
Adding these two equations together and noting that
:O(gzlyp), then neglecting the, terms gives for the final
master equation of the system
. o
p=Lp+—D[J ]p. (23)
Yp
The coefficientg?/ ¥, describes the strength of collective
damping of the two-qubit and the cavitymode and will be
called y.
The termLp is expanded to give the master equation as

) Qo _
p= —Izg—y[(J +J7),p]+ v1Dlo1lp + 2D ozlp + yD[J p.
p

(24)

This is the superfluorescence master equdttsh. The ap-

PHYSICAL REVIEW A 71, 042309(2005

dpe = = i[H, pe(t)] + dtyD[I Tpc(t) + \yd WY H[I Tps,
(26)

in which the first term describes the driving of the system
and the second term describes the damping from the cavity.
The third term, which is the stochastic part describes the
measuremenf18]. The homodyne photocurrefi8], nor-
malized so that the deterministic part does not depend on the
efficiency, is

() = VA Ie(t) + EON 7, (27)
where &(t) =dWt)/dt.

C. Dynamics with Feedback

Feedback is conditioned on the measurement result and
thus must act after the measurement. If we now add dynam-
ics with feedback from feedback Hamiltoniat,=1(t)F,
wherel (t)=(J"+J7)(t)+ &(t)/ ', we can derive the SME di-
rectly by using feedback theory of R¢R5],

dpc = dtyD[J |pe — idt[H,, pc] — idt[F, = i37p +ipcJ]
1 -
+ dt=D[Fp. + AWMOH[- iVyd —iNdJpe.  (28)
Y

HereH,=alJ,, F=\J,, J,=J +J", anda, \ are driving and
feedback amplitude, respectively. This corresponds to having
a feedback-modulated driving laser. This is also an Itd sto-
chastic equation, which means that the ensemble average
master equation can be found simply by dropping the sto-
chastic terms.

Therefore from the above master equationjinl sub-
space, we can write down the equation of motion for the
components of the 83 density matrix of the state of the
system, taking into account that(py=1 and thatp is Her-
mitian. In order to get the steady-state solution of the above
master equation, Eq28), we define

I URNIPRRVINY R
Vi = (0 + <Gl 10),
zi =(i[3,i) + (j13). (29

Then the differential equations fagj,y;;,z; are found to be

2
X12= = 2¥%p = 2N + —Xp3+ \2ay3,
Y

proximation that the time scale imposed by collective decay

rate y, is greater than the time scale of the two qubits evo-

lution imposed by single decay ratg, v,, that is y;, ¥,
<y, results in the following master equation:

p==i I+ 3]+ YDLT . (25)
Yo

Following the method of Ref.18], the stochastic master

equation(SME) conditioned on homodyne measurement of

the output of cavity is

: \? = =
X13= (‘ Y- o7 27\>X13‘ V2ayipt \2ays3,

. A? =
Xo3= (27+ 7)X12‘ (¥ + N)Xo3+ \2ay13,

- 5 5\? —~
Y12= — a\2%3+ | 2y + 6N + 7 V12— 2V2ay13,
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. [A )\2
Y13=~ \“Eale +\2aX3+ (7"’ 2\ + 7))’13:

. = 3\?2 5\?
Yo3=V2aX3+| =2y — 7 =6\ |yt | y+aAN+ 7 Y23
— —
+ 2\3’2&212_ 2\”2&213,

Z § r/_ r/_ 87
Zp=| -2\~ — st 2\20aY1p+ aV2yas~ 2

(2‘y A\ 2)@)
+ g——+— Zi3—

2y_an
3 3’

. = = 2y 4\ 4y 8\
213= 2\X13~ V2ay 5~ N2ayp3 + EREY A )

3 3 3
2A2>

t—— |Z13~

Y

4y , 8

3+3. (30

Here we have ignorer; since we require only eight param-

eters. The steady-state solutions are

=B _C _Db
=g BTG XBT g Y12= S’

_E _F .6 __H (31)
Y13= S’ Yo3= g AT g AT g

Here
S=24a*y* + 298+ 26y'\ + 14372 + 432)°0\3 + 789N\ 4
+926y°\° + 726y°\6 + 352)\" + 96\8 + 2022 (4"
+229°\ + 65y2\?) + 116yA°% + 60N%, (32
and
A=0,

B = 2y(y+ 2M)[4a%Y2 (72 + 3yh + A2 + N2(29* + 149°\
+33)A2+ 3223+ 16\9)],

c=0,
D = 2\2a7A(y + 2\)[4a2y? + NA(59% + 20\ + 16\2)],
E=0,

F = 2\2a92(y + 2\) (40292 + 297 + 1413\ + 3T92\2 + 4dy)\3
+44y\3 + 16\%),

G = Yy + 2[4V (7 + 3yN + ) + N2 (29" + 149\
+ 33202+ 323+ 16\%)],

H = y(y+ 20)3(40°\? + 294 + 1493\ + 33)°\% + 329\ °
+16\%). (33)

PHYSICAL REVIEW A 71, 042309(2005

IIl. ENTANGLEMENT AND PURITY

Now that we have the steady-state solution of the master
equation, we can determine if feedback-modulated driving
can increase the steady-state entanglement when the collec-
tive decay is considered. Let us now specify the measures
which we will be using to characterize the degree of en-
tanglement of a state. As we mentioned before, there are
several measures of entanglement. In this paper since we
have two qubits system and we choose the concurrgi@e
as a measure for it. For a mixed state represented by the
density matrixp the “spin-flipped” density operator, which
was introduced by Woottefd 0], is given by

5= (0,0 oyploy @ ), (34

where the bar op denotes complex conjugate pfin the
basis of{|gg),|g€),|eg),|ee}, and oy is the usual Pauli ma-

trix given by
0 -i

In order to work out the concurrence, we need to deter-
mine the square root of the eigenvalugsi,,\3,\, Of the
matrix pp and sort them in decreasing order, i.8;=X\,
=N3=\,. It can be shown that all these eigenvalues are real
and non-negative. The concurrerC®f the density matrixp
is defined as

Clp) = max(Vh; = Az = N5 = VA4, 0). (36)

The range of concurrendg is 0—1. WhenC is nonzero the
state is entangled. The maximum entanglement is w@en
=1.

Figure 2 is the plot of concurrence and purity vs driving
and feedback amplitude. As shown in Figa2 we can get a
certain amount of entanglement in the steady state of a un-
modulated driving systeril5]. In this case the maximum
concurrence is about 0.11, with appropriate choice of the
driving amplitudea=0.38y"1. The steady state is indepen-
dent of the initial state as long as it is in the symmetric
subspace, such &g)(g|. The coherent evolution alone is not
able to produce any entanglement for an initially unen-
tangled state, as it only consists of single qubit rotation with
no coupling between two qubits. Therefore the steady-state
entanglement is due to the common cooperative decoherence
coupling to the cavity environment acting together with the
coherent evolutiof15].

After including feedback onto the amplitude of the driv-
ing on the atom, proportional to the homodyne photocurrent,
we see that feedback is remarkable as the steady-state con-
currence has been improved from 0.11 to 0.31 as shown in
Fig. 2(a), with appropriate choice of driving amplitude
=+0.4y ! and feedback amplitudd=-0.8y%.

The gain of the steady-state entanglement comes at the
price of a loss of purity, as shown in Fig(l. There are a
number of measures that can be used for the degree of purity,
for example, the von Neumann entropy given 8¢
-Trp In p], and the trace sqared of the density matrix. In this
paper we choose the measure of purity given by

042309-5
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Concurrence for different drivng and feedback (a) Concurrence when feedback is off (b)
= 0.12

0.1
§0.08]
c
o £o.0d
S 3
9;‘. g 5004
3 g ©
e 3 0.02
73 ]
0
x—__/‘_-—-—‘
Amplitude -2 0 2 FIG. 2. Plot of concurrence
Feadbes Drving. Amplinida and purity vs driving and feed-
Purity for different driving and feedback (c) Purity when feedback is off (d) punty 9
back amplitude.

3 2 2 3

-1 0 1
Driving Amplitude

,_4 5 1 following equation[7]:
re=—| Tr{p“] .
3 4
2 3 2
. , re=1--[4g(2-3g) - C7], (39
From the above equations, we find that 4
1 8 where
r= 5*’ §<Xiz+xi3+X§3+yiz+ 23X+ 7y
i
1 2
+ 5(2213‘ 219)°|. (39)
0.8
The minimum purity in 3< 3 subspace is obvious%/. Note
that Eq.(36) measure is linear in Tp?] with minimum 0 and So.6
maximum 1. The minimum of O is only attainable inx4 2 feedback on
Hilbert space. é ' fc%idstt’;ciﬁtmf
To gain further insight into the purity of the steady state g04r
when it is entangled, we may look at the position of the
steady state located in the concurrence-purity plane. We be- 0.2
gin by choosing a series of driving and feedback amplitudes, ' o
and determine their corresponding purity and entanglement. . __.-_~i‘f_'.'f-:3:
In Fig. 3, we display these results with dots, representing the 0 7 RO AR
case of feedback-modulated driving, and stars, representing 0 0.2 0-4purity0-6 0.8 1
the case of unmodulated driving. Obviously, the feedback

mechanism leads to a noticeable increase of entanglement, g\ 3. piot of concurrence vs purity. The dots represent the
though it results in a less pure state. The continuous curve igase of feedback-modulated driving laser with two adjustable pa-
Fig. 3 represents the maximally entangled mixed state§ametersx and\, and the stars represent the case of unmodulated
states with the maximal amount of entanglement for a giveRjriving only with one adjustable parameterThe continuous diag-
degree of purity, or in other words, states with the minimumonal curve stands for the maximally entangled mixed states, states
purity for a given concurrence. The concurrence and thevith the maximal amount of entanglement for a given degree of
purity of a maximally entangled mixed state satisfy thepurity.
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Q Function Density Matrix Q Function Density Matrix
. Bell leg>+|ge> e Ground State

FIG. 4. Plots of theQ function and its projections on each of three planes, and the absolute values of matrix elements of the density
matrix are shown for each of eight different states, as indicated in the figure. The magnitudeQofuhetion in a particular direction is
represented by the distance measured from the center @ thaction. The diagonal elements of the density matrix|egxed, |eg<ed,
|geXge, |[gg){ggl from left to right, respectively.

{C/Z forC> 2/3 IV. Q FUNCTION AND DENSITY MATRIX
g=

1/3 forC<2/3 To gain further knowledge about the nature of the steady
state when it is maximally entangled, we look at the density
matrix andQ function. Since the density-matrix elements are

In Ref.[7], the degree of the mixture of a state is defined byCOMPlex numbers, we plot in Fig. 4 the modulus of the ma-
linear entropyS,. The purityr? defined in this paper is re- trix elements. We use the unentangled basis states

lated toS, by r?=1-5. |41) =9)19)2,
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l) = |O)1le)s, tion of |gg) and some of a Bell statél/\2)(leg)+|ge)),
while when the feedback modulation is switched on, the
|hs) = 1€)1]9)>, steady-state density matrix looks more like a mixture of a

nonmaximally entangled statéeg)+b|ge) and|ee +|gg).
1) = [€)1]€)5. (40)

because a separable basis is needed to discuss entanglement.
To define theQ function we need atomic coherent sthie

(26,27, To summarize, entanglement between two qubits can be
_ 21 . created dynamically by driving and coupling them to a

10 =[1+[(OFT exl Ilj, 1) (41) heavily damped cavity mode. When there is only the un-

The atomic coherent state is the closest quantum-mechanicaiodulated driving laser shining on the system, the maximum

V. DISCUSSION

state to a classical description of a spin system. steady-state concurrent@ measure of entanglemeig 0.11
The Q function is a positive distribution function, which [15]. In this paper we have re-derived these results and con-
is defined as structed a scheme to increase the steady-state entanglement

by using homodyne-mediated feedback, in which the driving
laser is modulated by the homodyne photocurrent derived

Q(6,¢) =i, 0.4lplj. 0,4),

= from the cavity output.
1i,6,¢) = 1 /L An analytical form for the steady-state solution of the
(J+m!(-m! master equation with feedback was derived and was used to
i show that the amount of the maximum steady-state concur-
xS {Coé+m(g>sinj—m<g)e—im¢] i,m), rence has been increased from 0.11 to 0.31. The properties of
e 2 2 the entangled state were also studied through the discussion
(42) of the Q function and the density matrix. The important point

here is that the feedback scheme can lift the steady state from
where the stat§, 6, ¢) is the spherical representation of the the ground state towards the excited state. Indeed with such a
coherent staté/) where # and ¢ are the standard spherical feedback scheme the most entangled state is much closer to
polar coordinates defined b= arctarig/2)e'¢. The magni- the Bell states, which are maximally entangled states.
tude of theQ function in a particular directioig and ¢) is An important issue is whether our scheme could be real-
represented in Fig. 4 by the distance measured from the orized experimentally. The crucial question is: can the indi-
gin. Since theQ function is the projection of the density Vvidual spontaneous emission of each atom can be ignored
matrix into a coherent state, th@ function does not give compared to the joint damping through the cavity? That is,
more information than the density matrix. However, the adcan we havey; and y, much less thang?/y,? Recent
vantage of theQ function is that it gives a more intuitive progress in cavity QED suggests that the answer is yes. Us-
view of where the state is located. ing the parameters from RgR28], we findg/2/ is around
We plot the steady-stat® function and density matrix in 20 MHz, andy,/2m andy; or v, are approximately 6 MHz.
Fig. 4. There are a number of points that need explanationlhis givesg?/y, equal to more than ten timeg or y,. Of
First, when there is only the unmodulated driving laser shincourse, for a specific experimental proposal, the effect of
ing on the system, the steady state having the most entanglgonzeroy, andy, on our predictions would have to be mod-
ment is mainly confined to the ground-st&efunction and  eled.
the upper state is almost unpopulated. However, when the Other outstanding issues relate the mechanism by which
driving amplitude is modified by feedback, the upper statefeedback changes the steady state to increase its entangle-
becomes very well populated and the entanglement is greatiypent. Specific questions include: “Could a different feedback
increased. This is not surprising, as more population in thécheme increase both the entanglement and the purity of the
upper state enhances nonlinearity both in the decoherendeixed steady state?” “To what extent can the system be
coupling and coherent evolution of the two-qubit system. treated semiclassically?” “What happens for a higher number
Second, in the particular separable 4 basis, the off- of atoms?” These are subjects for future exploration.
diagonal elements of the density matrix represent coherence
and the presence of coherence is a necessary condition for
the creation of entanglement. To illustrate this, we plot three ACKNOWLEDGMENTS
Bell states which are the maximally entangled states in Fig.
4. We see that the off-diagonal terms are present in these Jin Wang would like to acknowledge stimulating discus-
maximally entangled states. In contrast, we also plot thresions with Dr. Herman Batelaan, Dr. Hong Gao, Dr. Mikhalil
nonentangled states: the identity, the ground state, and tHe&rolov, Andrei Y. Istomin, Amiran Khuskivadze, and Dr. An-
excited state. We see that none of the off-diagonal elementhony Starace, as well as support from the Nebraska Re-
appear. search Initiative on Quantum Information. H. M. Wiseman
Third, when there is only the unmodulated driving laserand G. J. Milburn would like to acknowledge the support
shining on the system, the density matrix of the most enof the Australian Research Council and the State of
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