
Dynamical creation of entanglement by homodyne-mediated feedback

Jin Wang,1,2 H. M. Wiseman,3 and G. J. Milburn2
1Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111, USA

2Centre for Quantum Computer Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
3Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science, Griffith University,

Brisbane, Queensland 4111, Australia
sReceived 20 August 2004; published 4 April 2005d

For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady
state can be entangled by resonantly driving the systemfS. Schneider and G. J. Milburn, Phys. Rev. A65,
042107 s2002dg. We present a scheme to significantly increase the steady-state entanglement by using
homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of
which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits.
Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system
and the coherent evolution of individual qubits. We present the properties of the entangled states using the
SOs3d Q function.
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I. INTRODUCTION

The deeper ways that quantum information differs from
classical information involve the properties, implications,
and use of quantum entanglement. Entangled states are inter-
esting because they exhibit correlations that have no classical
analog. Any two systems described by a pure state that can-
not be expressed as a direct productuCl= uAl ^ uBl are en-
tangledsnonseparabled. For a two-qubit system there are four
mutually orthogonal Bell states, which may be denoted

uf±lAB =
1
Î2

su00lAB ± u11lABd,

uc±lAB =
1
Î2

su01lAB ± u10lABd, s1d

whereA andB are two subsystems, andu0l and u1l are two
orthogonal states that could represent the atomic ground and
excited state, respectively.

Quantum entanglement is a subject of intensive study be-
cause it is useful and frequently essential for quantum tele-
portationf1–3g, quantum cryptographyf4,5g, quantum dense
coding f3g, and quantum computationf6,7g. Also, entangled
atoms can be used to improve frequency standardsf8g. Thus
one of the increasing interests in this context is to find ways
to generate the right type of entanglement as well as possible
f9g. There are a number of measures, like the concurrence
f10g, entanglement of formationf10g, entanglement of distil-
lation f9,11g, relative entropy of entanglementf12g, and
negativity f13,14g, that have been proposed in recent years
for the purpose of quantifying the amount of entanglement.

In this paper we address the question: what is the maxi-
mum amount of steady-state entanglement that can be gen-
erated in a system consisting of two two-level atomssqubitsd
collectively damped, with the output being measured and fed
back to control the system state? This question follows natu-
rally from the study of Schneider and Milburnf15g which

considered the steady-state entanglement of a system where
the qubits are ions coupled to a center-of-mass vibrational
mode. In this paper we consider the case where the qubits are
coupled to a single cavity mode which is heavily damped so
as to enable a collective measurement of the qubits, which is
the basis for the feedback. We find an improved amount of
entanglement over that of Ref.f15g, but at the cost of a
reduced purity. Most quantum entanglement algorithms are
designed for ideal pure states. However, it is usually very
hard to create, maintain, and manipulate pure entangled
states under realistic conditions, simply because any system
is subject to the interactions with its external environment.
Therefore it immediately raises the question of whether the
entanglement can be distilled and used as a resource for
some quantum communication or computation task.

The paper is organized as follows. The model and the
corresponding master equation together with the derivation
of the adiabatic elimination of the cavity mode for a two-
qubit system are analyzed and the steady-state solution is
presented in Sec. II. The entanglement measures and the re-
lationship between purity and entanglement are analyzed in
Sec. III. In Sec. IV, we investigate the behavior of theQ
distribution function and the density matrix in order to obtain
information about the entangled states. We discuss our re-
sults in the concluding Sec. V.

II. MODEL AND MASTER EQUATION

A quantum computer requires that a set ofN two-state
systems can be prepared in an arbitrary superposition state.
Each of these systems is said to encode a qubit, as distinct
from the single bit encoded in a classical two state system.

We consider the case where two qubits are coupled to a
single cavity mode that is driven and heavily damped. The
two qubits are coupled to the cavity mode, and the damping
from the output of the cavity is subjected to a homodyne
measurement with a subsequent feedback to the cavity. Our
primary goal of feedback control in this paper is to demon-
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strate the ability of feedback control to increase steady-state
entanglement by counteracting the effects of both damping
and the measurement back-action on the system. The history
of feedback control in open quantum systems goes back to
the 1980s with the work of Yamamoto and co-workersf16g,
and Shapiro and co-workersf17g. Their objective was to ex-
plain the observation of fluctuations in a closed-loop photo-
current. They did this using quantum Langevin equations
sstochastic Heisenberg equations for the system operatorsd
and also semiclassical techniques. The latter approach was
made fully quantum mechanical by Plimak. For systems with
linear dynamics, all of these approaches, and the quantum
trajectory approach of Refs.f18,20g, are equally easy to use
to find analytical solutions. The advantage of Wiseman and
Milburn’s squantum trajectoryd approach to quantum control
via feedback is for systems with nonlinear dynamics, as we
will discuss in this paper.

To obtain a master equation for the two-qubit system, we
follow the analysis of Schneider and Milburn’s paperf15g for
the steady state of a systemf19g of two qubits interacting
simultaneously with a driving laser. They have shown that
the steady state is entangled. In this work, we expand their
analysis to include feedback modulation of the amplitude of
the driving laser.

A schematic diagram of the apparatus is shown in Fig. 1.
To ensure that the two atoms see the same phase and ampli-
tude of the cavity mode, we need to locate them at points of
the standing wave in which the two atoms are separated by
an integer number of wavelengths. The dipole-dipole inter-
action between the atoms can thus be ignored in the follow-
ing calculation. We assume a strong couplingg between the
atoms and the cavity mode. The fact that the coupling is the
same for both atoms means that they are indistinguishable.
This leads to interference in their damping via the cavity, as
we shall see. Such a proposed approach can be realized ex-
perimentally in a cavity QED system. In this paper we repro-

duce the results in Ref.f15g and show that one can increase
the steady-state entanglement by using feedback modulation
of the laser that drives the cavity mode.

It is assumed that that the laser interacts with the two
atoms simultaneously, forcing each atom to undergo Rabi
oscillations at the same frequency and phase. We can thus
define the total angular momentum operators for the two
qubits:

Ĵ± = ŝ1
± + ŝ2

± s2d

=Ĵx ± iĴy, s3d

where

ŝ± = ŝx ± iŝy. s4d

In terms of these operators, the cavity-atom interaction
Hamiltonian is

Ĥ =
g

2
fĴ−b+ + Ĵ+bg, s5d

where here the annihilation operatorb+ describes the cavity
mode andg is the coupling constant between the qubits and
the cavity. Since this is symmetric in the atoms, it is natural
to use the angular momentum states to describe the two two-
level atoms. The most interesting dynamics occurs in thej
=1 subspace. In terms of the individual atomic levels, the
three states forj =1 are

u1l = uel1uel2, u2l =
1
Î2

sugl1uel2 + uel1ugl2d, u3l = ugl1ugl2.

s6d

The fourth state, i.e., thej =0 subspace, is

uC j=0l =
1
Î2

sugl1uel2 − uel1ugl2d. s7d

This latter subspace will not change under any of the trans-
formations we perform, as will be seen below when we ana-
lyze the adiabatic elimination of the cavity mode.

A. Homodyne detection

For simplicity in explanation of homodyne detection, let
us now consider a system with a single two-level atom and
subject the atom to homodyne detection. We assume that all
of the damping from the cavity is collected and turned into a
beam. Ignoring the vacuum fluctuations in the field, the an-
nihilation operator for this beam isÎgs, normalized so that
the mean intensitygks†sl is equal to the number of photons
per unit time in the beam. This beam then enters one port of
a 50:50 beam splitter, while a strong local oscillatorb enters
the other. To ensure that this local oscillator has a fixed phase
relationship with the driving laser used in the measurement,
it would be natural to utilize the same coherent light field
source both as the driving laser and as the local oscillator in
the homodyne detection. This homodyne detection arrange-
ment is as shown in Fig. 1.

FIG. 1. Diagram of the experimental apparatus. The laser beam
is split to produce both the local oscillatorb and the fielda0 which
is modulated using the homodyne currentIstd derived from the
damped cavity.
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Again ignoring vacuum fluctuations, the two field opera-
tors for the light exiting the beam splitter,b1 andb2, are

bk = fÎgs − s− 1dkbg/Î2. s8d

When these two fields are detected, the two photocurrents
produced have means

Ī k = kubu2 − s− 1dksÎgbs† + Îgsb*d + gs†sl/2. s9d

The middle two terms represent the interference between the
system and the local oscillator.

Equations9d gives only the mean photocurrent. In an in-
dividual run of the experiment for a system, what is recorded
is not the mean photocurrent, but the instantaneous photocur-
rent. This photocurrent will vary stochastically from one run
to the next, because of the irreducible randomness in the
quantum measurement process. This randomness is not just
noise, however. It is correlated with the evolution of the
system and thus tells the experimenter something about the
state of the system. The stochastic evolution of the state of
the system conditioned by the measurement record is called a
“quantum trajectory”f20g. Of course, the master equation is
still obeyed on average, so the set of possible quantum tra-
jectories is called an unravelling of the master equationf20g.
It is the conditioning of the system state by the photocurrent
record that allows feedback control the system state at the
quantum level.

The ideal limit of homodyne detection is when the local
oscillator amplitude goes to infinity, which in practical terms
meansubu2@g. In this limit, the rates of the photodetections
go to infinity, and thus each photodetector produces a con-
tinuous photocurrent with white noise. For our purposes the
only relevant quantity, suitably normalized, is the difference
between the two photocurrentsf18,20g,

Istd =
I1std − I2std

ubu
= Îgke−iFs† + eiFslcstd + jstd. s10d

A number of aspects of Eq.s10d need to be explained.
First, F=argb, the phase of the local oscillatorsdefined
relative to the driving fieldd. Here we setF=0. Of course, all
that really matters here is the relationship between the driv-
ing phase and the local oscillator phase, not the absolute
phase of either. Second, the subscriptc means conditioned
and refers to the fact that if one is making a homodyne mea-
surement then this yields information about the system.
Hence any system averages will be conditioned on the pre-
vious photocurrent record. Third, the final termjstd repre-
sents Gaussian white noise, so that

jstddt = dWstd, s11d

an infinitesimal Wiener increment defined byf21g

fdWstdg2 = dt, s12d

EfdWstdg = 0. s13d

B. Adiabatic elimination of the cavity mode

Let us now come back to the two-qubit system. The cavity
mode is uninteresting as for the high levels of damping its

behavior is slaved to the driving, so it will then be adiabati-
cally eliminatedf15,22,23g in our first calculation, resulting
in a master equation followed by the density operatorr,
wherer only includes the two qubits.

The complete master equation describing the system
pumped by an unmodulated driving laser, including the cav-
ity mode, is described by a density operatorv given as fol-
lows:

v̇ = −
1

2
afb − b†,vg − i

g

2
fJ−b+ + J+b,vg + g1Dfs1gv

+ g2Dfs2gv + gpDfbgv. s14d

Here the annihilation operatorsb describe the cavity mode,
g1,g2, and gp are the coefficients of damping for the two
qubits andb mode, respectively.D is a superoperator defined
asD=DfAgB;ABA†−hA†A,Bj /2 for irreversible evolution.
The cavity mode is heavily pumped and damped.

The adiabatic elimination of cavity mode is done first by
displacing the density operatorv, and the master equation
describing its evolution, to zero in theb mode. We assume
that gp is sufficiently large that the state stays close to an
equilibrium coherent state with amplitude

m = a/gp. s15d

The displacement operator

Db = emsb+−bd s16d

is used to carry out this transformation. The new density
operator isn=Dbs−mdvDbsmd. Applying this operation to the
original master equation in Eq.s14d gives the new master
equation forn in which theb mode is of zero average am-
plitude. This is

ṅ = Ln − i
g

2
fsJ+b + J−b+d,ng + gpDfbgn s17d

in which all the terms involving only the qubits in the super-
operatorL defined as

Ln = − i
ga

2gp
fsJ+ + J−d,ng + g1Dfs1gn + g2Dfs2gn.

s18d

Since the amplitude of modeb is small, a partial expan-
sion of the density matrixn in terms of theb mode number
states need only be carried out to small photon numbers.
Therefore

n = r0u0lk0u + sr1u1lk0u + H.c.d + r2u1lk1u + sr28u2lk0u + H.c.d

+ Osl3d, s19d

wherel=g/gp is a very small number andu0l is the cavity
vacuum state. In this paper, the parametersa and l are
scaled in units of the damping rateg. All other parameters
are dimensionless. This is substituted into the master equa-
tion Eq.s17d which is expanded and terms multiplying equal
sets ofb mode number projectors are gathered together to get
a set of four equations. Terms of greater than second order
are neglected. These equations are
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ṙ0 = Lr0 − i
g

2
fJ+r1 − r1

+J−g + gpr2,

ṙ1 = Lr1 − i
g

2
fJ+r0 + Î2J+2r28 − J−2r28g −

gp

2
r1,

ṙ2 = Lr2 − i
g

2
fJ+r1

+ − r1J
+2g − gpr2,

ṙ28 = Lr28 − i
g

2
fÎ2J−r1g − gpr28. s20d

Now we make the assumption that bothṙ1=0 andṙ28=0 so
that by using the second and fourth of Eq.s20d, the values of
r1 andr28 are found to be

r1 =
− ig

gp
fJ−r0 − J−r2g,

r28 =
ig

Î2gp

J−r1, s21d

wherer1=Osg/gpd andr2=Osg2/gpd. These are then substi-
tuted into the first and third equation of set Eq.s20d which
become

ṙ0 = Lṙ0 −
g2

2gp
fJ+J–r0 + r0J

+J− − J+J−r2 − r2J
+J−g + gpr2,

ṙ2 = Lr2 +
g2

gp
fJ−r0J

+ − J−r2J
+g − gpr2. s22d

Adding these two equations together and noting thatr2
=Osg2/gpd, then neglecting ther2 terms gives for the final
master equation of the system

ṙ = Lr +
g2

gp
DfJ−gr. s23d

The coefficientg2/gp describes the strength of collective
damping of the two-qubit and the cavityb mode and will be
calledg.

The termLr is expanded to give the master equation as

ṙ = − i
ga

2gp
fsJ+ + J−d,rg + g1Dfs1gr + g2Dfs2gr + gDfJ−gr.

s24d

This is the superfluorescence master equationf24g. The ap-
proximation that the time scale imposed by collective decay
rategp is greater than the time scale of the two qubits evo-
lution imposed by single decay rateg1,g2, that is g1,g2
!g, results in the following master equation:

ṙ = − i
ga

2gp
fsJ+ + J−d,rg + gDfJ−gr. s25d

Following the method of Ref.f18g, the stochastic master
equationsSMEd conditioned on homodyne measurement of
the output of cavity is

drc = − ifH,rcstdg + dtgDfJ−grcstd + ÎgdWstdHfJ−grc,

s26d

in which the first term describes the driving of the system
and the second term describes the damping from the cavity.
The third term, which is the stochastic part describes the
measurementf18g. The homodyne photocurrentf18g, nor-
malized so that the deterministic part does not depend on the
efficiency, is

Istd = ÎgkJxlcstd + jstd/Îh, s27d

wherejstd=dWstd /dt.

C. Dynamics with Feedback

Feedback is conditioned on the measurement result and
thus must act after the measurement. If we now add dynam-
ics with feedback from feedback HamiltonianHfb= IstdF,
whereIstd=kJ++J−lstd+jstd /Îh, we can derive the SME di-
rectly by using feedback theory of Ref.f25g,

drc = dtgDfJ−grc − idtfHa,rcg − idtfF,− iJ−rc + ircJ
+g

+ dt
1

g
DfFgrc + dWstdHf− iÎgJ− − ilJxgrc. s28d

HereHa=aJx, F=lJx, Jx=J−+J+, anda, l are driving and
feedback amplitude, respectively. This corresponds to having
a feedback-modulated driving laser. This is also an Itô sto-
chastic equation, which means that the ensemble average
master equation can be found simply by dropping the sto-
chastic terms.

Therefore from the above master equation inj =1 sub-
space, we can write down the equation of motion for the
components of the 333 density matrix of the state of the
system, taking into account that Trsr̂d=1 and thatr is Her-
mitian. In order to get the steady-state solution of the above
master equation, Eq.s28d, we define

xij = ki uJxu jl + k j uJxuil,

yij = ki uJyu jl + k j uJyuil,

zij = ki uJzu jl + k j uJzuil. s29d

Then the differential equations forxij ,yij ,zij are found to be

ẋ12 = − 2yx12 − 2l +
l2

g
x23 + Î2ay13,

ẋ13 = S− g −
l2

g
− 2lDx13 − Î2ay12 + Î2ay23,

ẋ23 = S2g +
l2

g
Dx12 − sg2 + l2dx23 + Î2ay13,

ẏ12 = − aÎ2x13 + S2g + 6l +
5l2

g
Dy12 − 2Î2ay13,
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ẏ13 = − Î2ax12 + Î2ax23 + Sg + 2l +
2l2

g
Dy13,

ẏ23 = Î2ax13 + S− 2g −
3l2

g
− 6lDy12 + Sg + 4l +

5l2

g
Dy23

+ 2Î2az12 − 2Î2az13,

ż12 = S− 2l −
3l2

g
Dx13 − 2Î2ay12 + aÎ2y23 −

8g

3
z12

+ S2g

3
−

4l

3
+

2l2

g
Dz13 −

2g

3
−

4l

3
,

ż13 = 2lx13 − Î2ay12 − Î2ay23 + S2g

3
+

4l

3
Dz12 − S4g

3
+

8l

3

+
2l2

g
Dz13 −

4g

3
+

8l

3
. s30d

Here we have ignoredz23 since we require only eight param-
eters. The steady-state solutions are

x12 =
A

S
, x13 =

B

S
, x23 =

C

S
, y12 =

D

S
,

y13 =
E

S
, y23 =

F

S
, z12 =

G

S
, z13 =

H

S
. s31d

Here

S= 24a4g4 + 2g8 + 26g7l + 143g6l2 + 432g5l3 + 789g4l4

+ 926g3l5 + 726g2l6 + 352gl7 + 96l8 + 2a2g2s4g4

+ 22g3l + 65g2l2d + 116gl3 + 60l4, s32d

and

A = 0,

B = 2gsg + 2ldf4a2g2sg2 + 3gl + l2d + l2s2g4 + 14g3l

+ 33g2l2 + 32gl3 + 16l4dg,

C = 0,

D = 2Î2ag2sg + 2ldf4a2g2 + l2s5g2 + 20gl + 16l2dg,

E = 0,

F = 2Î2ag2sg + 2lds4a2g2 + 2g4 + 14g3l + 37g2l2 + 44gl3

+ 44gl3 + 16l4d,

G = gsg + 2ldf4a2g2sg2 + 3gl + l2d + l2s2g4 + 14g3l

+ 33g2l2 + 32gl3 + 16l4dg,

H = gsg + 2ld3s4a2l2 + 2g4 + 14g3l + 33g2l2 + 32gl3

+ 16l4d. s33d

III. ENTANGLEMENT AND PURITY

Now that we have the steady-state solution of the master
equation, we can determine if feedback-modulated driving
can increase the steady-state entanglement when the collec-
tive decay is considered. Let us now specify the measures
which we will be using to characterize the degree of en-
tanglement of a state. As we mentioned before, there are
several measures of entanglement. In this paper since we
have two qubits system and we choose the concurrencef10g
as a measure for it. For a mixed state represented by the
density matrixr the “spin-flipped” density operator, which
was introduced by Woottersf10g, is given by

r̃ = ssy ^ sydr̄ssy ^ syd, s34d

where the bar ofr̄ denotes complex conjugate ofr in the
basis ofhuggl , ugel , uegl , ueelj, andsy is the usual Pauli ma-
trix given by

sy = S0 − i

i 0
D . s35d

In order to work out the concurrence, we need to deter-
mine the square root of the eigenvaluesl1,l2,l3,l4 of the
matrix rr̃ and sort them in decreasing order, i.e.,l1ùl2
ùl3ùl4. It can be shown that all these eigenvalues are real
and non-negative. The concurrenceC of the density matrixr
is defined as

Csrd = maxsÎl1 − Îl2 − Îl3 − Îl4,0d. s36d

The range of concurrenceC is 0–1. WhenC is nonzero the
state is entangled. The maximum entanglement is whenC
=1.

Figure 2 is the plot of concurrence and purity vs driving
and feedback amplitude. As shown in Fig. 2sad, we can get a
certain amount of entanglement in the steady state of a un-
modulated driving systemf15g. In this case the maximum
concurrence is about 0.11, with appropriate choice of the
driving amplitudea=0.38g−1. The steady state is indepen-
dent of the initial state as long as it is in the symmetric
subspace, such asuglkgu. The coherent evolution alone is not
able to produce any entanglement for an initially unen-
tangled state, as it only consists of single qubit rotation with
no coupling between two qubits. Therefore the steady-state
entanglement is due to the common cooperative decoherence
coupling to the cavity environment acting together with the
coherent evolutionf15g.

After including feedback onto the amplitude of the driv-
ing on the atom, proportional to the homodyne photocurrent,
we see that feedback is remarkable as the steady-state con-
currence has been improved from 0.11 to 0.31 as shown in
Fig. 2sad, with appropriate choice of driving amplitudea
= ±0.4g−1 and feedback amplitudeb=−0.8g−1.

The gain of the steady-state entanglement comes at the
price of a loss of purity, as shown in Fig. 2sbd. There are a
number of measures that can be used for the degree of purity,
for example, the von Neumann entropy given byS=
−Trfr ln rg, and the trace sqared of the density matrix. In this
paper we choose the measure of purity given by
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r2 =
4

3
STrfr2g −

1

4
D . s37d

From the above equations, we find that

r2 =
1

9
+

8

9
Sx12

2 + x13
2 + x23

2 + y12
2 + y13

2 + x23
2 + z12

2

+
1

3
s2z13 − z12d2D . s38d

The minimum purity in 333 subspace is obviously19. Note
that Eq.s36d measure is linear in Trfr2g with minimum 0 and
maximum 1. The minimum of 0 is only attainable in 434
Hilbert space.

To gain further insight into the purity of the steady state
when it is entangled, we may look at the position of the
steady state located in the concurrence-purity plane. We be-
gin by choosing a series of driving and feedback amplitudes,
and determine their corresponding purity and entanglement.
In Fig. 3, we display these results with dots, representing the
case of feedback-modulated driving, and stars, representing
the case of unmodulated driving. Obviously, the feedback
mechanism leads to a noticeable increase of entanglement,
though it results in a less pure state. The continuous curve in
Fig. 3 represents the maximally entangled mixed states,
states with the maximal amount of entanglement for a given
degree of purity, or in other words, states with the minimum
purity for a given concurrence. The concurrence and the
purity of a maximally entangled mixed state satisfy the

following equationf7g:

r2 = 1 −
3

4
f4gs2 − 3gd − C2g, s39d

where

FIG. 2. Plot of concurrence
and purity vs driving and feed-
back amplitude.

FIG. 3. Plot of concurrence vs purity. The dots represent the
case of feedback-modulated driving laser with two adjustable pa-
rametersa andl, and the stars represent the case of unmodulated
driving only with one adjustable parametera. The continuous diag-
onal curve stands for the maximally entangled mixed states, states
with the maximal amount of entanglement for a given degree of
purity.
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g = HC/2 for C . 2/3

1/3 for C , 2/3
J .

In Ref. f7g, the degree of the mixture of a state is defined by
linear entropySL. The purity r2 defined in this paper is re-
lated toSL by r2=1−SL.

IV. Q FUNCTION AND DENSITY MATRIX

To gain further knowledge about the nature of the steady
state when it is maximally entangled, we look at the density
matrix andQ function. Since the density-matrix elements are
complex numbers, we plot in Fig. 4 the modulus of the ma-
trix elements. We use the unentangled basis states

uc1l = ugl1ugl2,

FIG. 4. Plots of theQ function and its projections on each of three planes, and the absolute values of matrix elements of the density
matrix are shown for each of eight different states, as indicated in the figure. The magnitude of theQ function in a particular direction is
represented by the distance measured from the center of theQ function. The diagonal elements of the density matrix areueelkeeu, ueglkegu,
ugelkgeu, ugglkggu from left to right, respectively.
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uc2l = ugl1uel2,

uc3l = uel1ugl2,

uc4l = uel1uel2. s40d

because a separable basis is needed to discuss entanglement.
To define theQ function we need atomic coherent stateuzl

f26,27g,

uzl = f1 + uszdu2g−jexpfzĴ+gu j ,− jl. s41d

The atomic coherent state is the closest quantum-mechanical
state to a classical description of a spin system.

The Q function is a positive distribution function, which
is defined as

Qsu,fd = k j ,u,furu j ,u,fl,

u j ,u,fl =Î s2jd!
s j + md!s j − md!

3 o
m=−j

j Fcosj+mSu

2
Dsinj−mSu

2
De−imfGu j ,ml,

s42d

where the stateu j ,u ,fl is the spherical representation of the
coherent stateuzl whereu and f are the standard spherical
polar coordinates defined byz=arctansu /2de−if. The magni-
tude of theQ function in a particular directionsu andfd is
represented in Fig. 4 by the distance measured from the ori-
gin. Since theQ function is the projection of the density
matrix into a coherent state, theQ function does not give
more information than the density matrix. However, the ad-
vantage of theQ function is that it gives a more intuitive
view of where the state is located.

We plot the steady-stateQ function and density matrix in
Fig. 4. There are a number of points that need explanation.
First, when there is only the unmodulated driving laser shin-
ing on the system, the steady state having the most entangle-
ment is mainly confined to the ground-stateQ function and
the upper state is almost unpopulated. However, when the
driving amplitude is modified by feedback, the upper state
becomes very well populated and the entanglement is greatly
increased. This is not surprising, as more population in the
upper state enhances nonlinearity both in the decoherence
coupling and coherent evolution of the two-qubit system.

Second, in the particular separable 434 basis, the off-
diagonal elements of the density matrix represent coherence
and the presence of coherence is a necessary condition for
the creation of entanglement. To illustrate this, we plot three
Bell states which are the maximally entangled states in Fig.
4. We see that the off-diagonal terms are present in these
maximally entangled states. In contrast, we also plot three
nonentangled states: the identity, the ground state, and the
excited state. We see that none of the off-diagonal elements
appear.

Third, when there is only the unmodulated driving laser
shining on the system, the density matrix of the most en-
tangled steady state looks most similar to that of superposi-

tion of uggl and some of a Bell states1/Î2dsuegl+ ugeld,
while when the feedback modulation is switched on, the
steady-state density matrix looks more like a mixture of a
nonmaximally entangled stateauegl+bugel and ueel+ uggl.

V. DISCUSSION

To summarize, entanglement between two qubits can be
created dynamically by driving and coupling them to a
heavily damped cavity mode. When there is only the un-
modulated driving laser shining on the system, the maximum
steady-state concurrencesa measure of entanglementd is 0.11
f15g. In this paper we have re-derived these results and con-
structed a scheme to increase the steady-state entanglement
by using homodyne-mediated feedback, in which the driving
laser is modulated by the homodyne photocurrent derived
from the cavity output.

An analytical form for the steady-state solution of the
master equation with feedback was derived and was used to
show that the amount of the maximum steady-state concur-
rence has been increased from 0.11 to 0.31. The properties of
the entangled state were also studied through the discussion
of theQ function and the density matrix. The important point
here is that the feedback scheme can lift the steady state from
the ground state towards the excited state. Indeed with such a
feedback scheme the most entangled state is much closer to
the Bell states, which are maximally entangled states.

An important issue is whether our scheme could be real-
ized experimentally. The crucial question is: can the indi-
vidual spontaneous emission of each atom can be ignored
compared to the joint damping through the cavity? That is,
can we haveg1 and g2 much less thang2/gp? Recent
progress in cavity QED suggests that the answer is yes. Us-
ing the parameters from Ref.f28g, we findg/2 /p is around
20 MHz, andgp/2p andg1 or g2 are approximately 6 MHz.
This givesg2/gp equal to more than ten timesg1 or g2. Of
course, for a specific experimental proposal, the effect of
nonzerog1 andg2 on our predictions would have to be mod-
eled.

Other outstanding issues relate the mechanism by which
feedback changes the steady state to increase its entangle-
ment. Specific questions include: “Could a different feedback
scheme increase both the entanglement and the purity of the
mixed steady state?” “To what extent can the system be
treated semiclassically?” “What happens for a higher number
of atoms?” These are subjects for future exploration.
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