7,343 research outputs found
Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror
It has previously been shown theoretically that the exchange of linear
momentum between the light field in an optical cavity and a vibrating end
mirror can entangle the electromagnetic field with the vibrational motion of
that mirror. In this paper we consider the rotational analog of this situation
and show that radiation torque can similarly entangle a Laguerre-Gaussian
cavity mode with a rotating end mirror. We examine the mirror-field
entanglement as a function of ambient temperature, radiation detuning and
orbital angular momentum carried by the cavity mode.Comment: 5 figures, 1 table, submitted to Phys.Rev.
Trapping and Cooling a mirror to its quantum mechanical ground state
We propose a technique aimed at cooling a harmonically oscillating mirror to
its quantum mechanical ground state starting from room temperature. Our method,
which involves the two-sided irradiation of the vibrating mirror inside an
optical cavity, combines several advantages over the two-mirror arrangements
being used currently. For comparable parameters the three-mirror configuration
provides a stiffer trap for the oscillating mirror. Furthermore it prevents
bistability from limiting the use of higher laser powers for mirror trapping,
and also partially does so for mirror cooling. Lastly, it improves the
isolation of the mirror from classical noise so that its dynamics are perturbed
mostly by the vacuum fluctuations of the optical fields. These improvements are
expected to bring the task of achieving ground state occupation for the mirror
closer to completion.Comment: 5 pages, 1 figur
Bogoliubov dynamics of condensate collisions using the positive-P representation
We formulate the time-dependent Bogoliubov dynamics of colliding
Bose-Einstein condensates in terms of a positive-P representation of the
Bogoliubov field. We obtain stochastic evolution equations for the field which
converge to the full Bogoliubov description as the number of realisations
grows. The numerical effort grows linearly with the size of the computational
lattice. We benchmark the efficiency and accuracy of our description against
Wigner distribution and exact positive-P methods. We consider its regime of
applicability, and show that it is the most efficient method in the common
situation - when the total particle number in the system is insufficient for a
truncated Wigner treatment.Comment: 9 pages. 5 figure
Impending carotid blowout stabilization using an LT-D tube
Adequate stabilization of a patient presenting with a carotid blowout is one of the most challenging issues an on-call ENT surgeon can be confronted with. Reducing the bleeding and securing the airway are essential before more definitive management. We present the case of a 72-year-old patient with head and neck cancer who arrived at the emergency room with a carotid blowout and who was successfully stabilized using a King LT-D ventilation tube
Optomechanical trapping and cooling of partially transparent mirrors
We consider the radiative trapping and cooling of a partially transmitting
mirror suspended inside an optical cavity, generalizing the case of a perfectly
reflecting mirror previously considered [M. Bhattacharya and P. Meystre, Phys.
Rev. Lett. \textbf{99}, 073601 (2007)]. This configuration was recently used in
an experiment to cool a nanometers-thick membrane [Thompson \textit{et al.},
arXiv:0707.1724v2, 2007]. The self-consistent cavity field modes of this system
depend strongly on the position of the middle mirror, leading to important
qualitative differences in the radiation pressure effects: in one case, the
situation is similar that of a perfectly reflecting middle mirror, with only
minor quantitative modifications. In addition, we also identify a range of
mirror positions for which the radiation-mirror coupling becomes purely
dispersive and the back-action effects that usually lead to cooling are absent,
although the mirror can still be optically trapped. The existence of these two
regimes leads us to propose a bichromatic scheme that optimizes the cooling and
trapping of partially transmissive mirrors.Comment: Submitted to Phys.Rev.
Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector
We carry out a quantum analysis of a dc SQUID mechanical displacement
detector, comprising a SQUID with mechanically compliant loop segment, which is
embedded in a microwave transmission line resonator. The SQUID is approximated
as a nonlinear, current dependent inductance, inducing an external flux
tunable, nonlinear Duffing self-interaction term in the microwave resonator
mode equation. Motion of the compliant SQUID loop segment is transduced
inductively through changes in the external flux threading SQUID loop, giving a
ponderomotive, radiation pressure type coupling between the microwave and
mechanical resonator modes. Expressions are derived for the detector signal
response and noise, and it is found that a soft-spring Duffing self-interaction
enables a closer approach to the displacement detection standard quantum limit,
as well as cooling closer to the ground state
Emergent classicality in continuous quantum measurements
We develop a classical theoretical description for nonlinear many-body
dynamics that incorporates the back-action of a continuous measurement process.
The classical approach is compared with the exact quantum solution in an
example with an atomic Bose-Einstein condensate in a double-well potential
where the atom numbers in both potential wells are monitored by light
scattering. In the classical description the back-action of the measurements
appears as diffusion of the relative phase of the condensates on each side of
the trap. When the measurements are frequent enough to resolve the system
dynamics, the system behaves classically. This happens even deep in the quantum
regime, and demonstrates how classical physics emerges from quantum mechanics
as a result of measurement back-action
Femtosecond Photodissociation of Molecules Facilitated by Noise
We investigate the dynamics of diatomic molecules subjected to both a
femtosecond mid-infrared laser pulse and Gaussian white noise. The stochastic
Schr\"odinger equation with a Morse potential is used to describe the molecular
vibrations under noise and the laser pulse. For weak laser intensity, well
below the dissociation threshold, it is shown that one can find an optimum
amount of noise that leads to a dramatic enhancement of the dissociation
probability. The enhancement landscape which is shown as a function of both the
noise and the laser strength, exhibits a global maximum. A frequency-resolved
gain profile is recorded with a pump-probe set-up which is experimentally
realizable. With this profile we identify the linear and nonlinear multiphoton
processes created by the interplay between laser and noise and assess their
relative contribution to the dissociation enhancement.Comment: 5 pages,5 figure
Optimal Stochastic Enhancement of Photoionization
The effect of noise on the nonlinear photoionization of an atom due to a
femtosecond pulse is investigated in the framework of the stochastic
Schr\"odinger equation. A modest amount of white noise results in an
enhancement of the net ionization yield by several orders of magnitude, giving
rise to a form of quantum stochastic resonance. We demonstrate that this effect
is preserved if the white noise is replaced by broadband chaotic light.Comment: 4 pages, 4 figure
Phase-noise induced limitations on cooling and coherent evolution in opto-mechanical systems
We present a detailed theoretical discussion of the effects of ubiquitous
laser noise on cooling and the coherent dynamics in opto-mechanical systems.
Phase fluctuations of the driving laser induce modulations of the linearized
opto-mechanical coupling as well as a fluctuating force on the mirror due to
variations of the mean cavity intensity. We first evaluate the influence of
both effects on cavity cooling and find that for a small laser linewidth the
dominant heating mechanism arises from intensity fluctuations. The resulting
limit on the final occupation number scales linearly with the cavity intensity
both under weak and strong coupling conditions. For the strong coupling regime,
we also determine the effect of phase noise on the coherent transfer of single
excitations between the cavity and the mechanical resonator and obtain a
similar conclusion. Our results show that conditions for optical ground state
cooling and coherent operations are experimentally feasible and thus laser
phase noise does pose a challenge but not a stringent limitation for
opto-mechanical systems
- ā¦