6,731 research outputs found
Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium
The recent anomalous segregation experiment of Lewandowski et al. (PRL, 88,
070403, 2002) shows dramatic, rapid internal state segregation for two
hyperfine levels of rubidium. We simulate an effective one dimensional model of
the system for experimental parameters and find reasonable agreement with the
data. The Ramsey frequency is found to be insensitive to the decoherence of the
superposition, and is only equivalent to the interaction energy shift for a
pure superposition. A Quantum Boltzmann equation describing collisions is
derived using Quantum Kinetic Theory, taking into account the different
scattering lengths of the internal states. As spin-wave experiments are likely
to be attempted at lower temperatures we examine the effect of degeneracy on
decoherence by considering the recent experiment of Lewandowski et al. where
degeneracy is around 10%. We also find that the segregation effect is only
possible when transport terms are included in the equations of motion, and that
the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic
motion as foreseen in the experimental reportComment: 26 pages, 4 figures, to be published in J. Phys.
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Sympathetic cooling of trapped fermions by bosons in the presence of particle losses
We study the sympathetic cooling of a trapped Fermi gas interacting with an
ideal Bose gas below the critical temperature of the Bose-Einstein
condensation. We derive the quantum master equation, which describes the
dynamics of the fermionic component, and postulating the thermal distribution
for both gases we calculate analytically the rate at which fermions are cooled
by the bosonic atoms. The particle losses constitute an important source of
heating of the degenerate Fermi gas. We evaluate the rate of loss-induced
heating and derive analytical results for the final temperature of fermions,
which is limited in the presence of particle losses.Comment: 7 pages, 2 figures, EPL style; final versio
Decoherence induced by a phase-damping reservoir
A phase damping reservoir composed by -bosons coupled to a system of
interest through a cross-Kerr interaction is proposed and its effects on
quantum superpo sitions are investigated. By means of analytical calculations
we show that: i-) the reservoir induces a Gaussian decay of quantum coherences,
and ii-) the inher ent incommensurate character of the spectral distribution
yields irreversibility . A state-independent decoherence time and a master
equation are both derived an alytically. These results, which have been
extended for the thermodynamic limit, show that nondissipative decoherence can
be suitably contemplated within the EI D approach. Finally, it is shown that
the same mechanism yielding decoherence ar e also responsible for inducing
dynamical disentanglement.Comment: 8 pages, 3 figure
Effects of Measurement back-action in the stabilization of a Bose-Einstein condensate through feedback
We apply quantum filtering and control to a particle in a harmonic trap under
continuous position measurement, and show that a simple static feedback law can
be used to cool the system. The final steady state is Gaussian and dependent on
the feedback strength and coupling between the system and probe. In the limit
of weak coupling this final state becomes the ground state. An earlier model by
Haine et. al. (PRA 69, 2004) without measurement back-action showed dark
states: states that did not display error signals, thus remaining unaffected by
the control. This paper shows that for a realistic measurement process this is
not true, which indicates that a Bose-Einstein condensate may be driven towards
the ground state from any arbitrary initial state.Comment: 1 Tex, 4 PS pictures, 1 bbl fil
Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector
We carry out a quantum analysis of a dc SQUID mechanical displacement
detector, comprising a SQUID with mechanically compliant loop segment, which is
embedded in a microwave transmission line resonator. The SQUID is approximated
as a nonlinear, current dependent inductance, inducing an external flux
tunable, nonlinear Duffing self-interaction term in the microwave resonator
mode equation. Motion of the compliant SQUID loop segment is transduced
inductively through changes in the external flux threading SQUID loop, giving a
ponderomotive, radiation pressure type coupling between the microwave and
mechanical resonator modes. Expressions are derived for the detector signal
response and noise, and it is found that a soft-spring Duffing self-interaction
enables a closer approach to the displacement detection standard quantum limit,
as well as cooling closer to the ground state
Quantum Kinetic Theory V: Quantum kinetic master equation for mutual interaction of condensate and noncondensate
A detailed quantum kinetic master equation is developed which couples the
kinetics of a trapped condensate to the vapor of non-condensed particles. This
generalizes previous work which treated the vapor as being undepleted.Comment: RevTeX, 26 pages and 5 eps figure
The stochastic Gross-Pitaevskii equation II
We provide a derivation of a more accurate version of the stochastic
Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B
35,1555,(2002). The derivation does not rely on the concept of local energy and
momentum conservation, and is based on a quasi-classical Wigner function
representation of a "high temperature" master equation for a Bose gas, which
includes only modes below an energy cutoff E_R that are sufficiently highly
occupied (the condensate band). The modes above this cutoff (the non-condensate
band) are treated as being essentially thermalized. The interaction between
these two bands, known as growth and scattering processes, provide noise and
damping terms in the equation of motion for the condensate band, which we call
the stochastic Gross-Pitaevskii equation. This approach is distinguished by the
control of the approximations made in its derivation, and by the feasibility of
its numerical implementation.Comment: 24 pages of LaTeX, one figur
Opacity of electromagnetically induced transparency for quantum fluctuations
We analyze the propagation of a pair of quantized fields inside a medium of
three-level atoms in configuration. We calculate the stationary
quadrature noise spectrum of the field after propagating through the medium, in
the case where the probe field is in a squeezed state and the atoms show
electromagnetically induced transparency (EIT). We find an oscillatory transfer
of the initial quantum properties between the probe and pump fields which is
most strongly pronounced when both fields have comparable Rabi frequencies.
This implies that the quantum state measured after propagation can be
completely different from the initial state, even though the mean values of the
field are unaltered
- …