44 research outputs found

    Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation

    Get PDF
    Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation

    Heterozygosity for bisphosphoglycerate mutase deficiency expressing clinically as congenital erythrocytosis: A case series and literature review

    Get PDF
    Erythrocytosis is associated with increased red blood cell mass and can be either congenital or acquired. Congenital secondary causes are rare and include germline variants increasing haemoglobin (Hb)-oxygen affinity (e.g., Hb or bisphosphoglycerate mutase (BPGM) variants) or affecting oxygen-sensing pathway proteins. Here, we describe five adults from three kindreds with erythrocytosis associated with heterozygosity for BPGM variants, including one novel. Functional analyses showed partial BPGM deficiency, reduced 2,3-bisphosphoglycerate levels and/or increased Hb-oxygen affinity. We also review currently known BPGM variants. This study contributes to raising awareness of BPGM variants, and in particular that heterozygosity for BPGM deficiency may already manifest clinically

    Comprehensive <i>in silico</i> and functional studies for classification of <i>EPAS1/HIF2A</i> genetic variants identified in patients with erythrocytosis

    Get PDF
    Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease

    ETUDE DES ALTERATIONS DU LOCUS MTS (MULTIPLE TUMOR SUPPRESSOR) DANS LES LEUCEMIES AIGUES LYMPHOBLASTIQUES DE LA LIGNEE T

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation

    Get PDF
    International audienceMyeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation

    Von Hippel-Lindau : How a rare disease illuminates cancer biology

    No full text
    International audienceVon Hippel–Lindau (VHL) disease is a rare autosomal dominant syndrome (1/36,000 live births) with highly penetrance that predispose to the development of a panel of highly vascularized tumors (model of tumoral angiogenesis). Main manifestations include central nervous system (CNS) and retinal haeman-gioblastomas, endolymphatic sac tumors, clear-cell renal cell carcinomas (RCC), phaeochromocytomas and pancreatic neuroendocrine tumors. RCC has become the first potential cause of mortality and VHL disease is the main cause of inherited RCC. The disease is caused by germline mutations in the VHL tumor-suppressor gene that plays a major role in regulation of the oxygen-sensing pathway by targeting the hypoxia-inducible factor HIF for degradation in proteasome. VHL has also major HIF-independent functions , specially in regulation of primary cilium, extracellular matrix and apoptosis. Somatic inactivation of the VHL gene is the main molecular event in most sporadic RCC and the treatment of advanced RCC has been revolutionized by targeted therapy with drugs that block angiogenesis. These drugs are now in first line in metastatic sporadic RCC and have shown promising results for RCC, pancreatic neuroendocrine tumors and malignant pheochromocytomas in VHL patients

    Gene panel sequencing in idiopathic erythrocytosis

    Get PDF
    IF 6.671International audienc
    corecore