14 research outputs found

    FLAMINGOS-2: The Facility Near-Infrared Wide-field Imager & Multi-Object Spectrograph for Gemini

    Get PDF
    We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048x2048-pixel HAWAII-2 0.9-2.4 mm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object laser-machined plates or 3 long slits for spectroscopy over a 6x2-arcminute field of view, and selectable grisms provide resolutions from ∌\sim 1300 to ∌\sim 3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3x1-arcminute field with high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-Instrument WaveFront Sensor subsystems. We also present the current status of the project, currently in final testing in mid-2006.Comment: Submitted to SPIE Astronomical Telescopes & Instrumentation; 12 pages, incl. color figure

    Intravenous Alfaxalone and Propofol Anesthesia in the Bearded Dragon (Pogona vitticeps)

    No full text

    The MOAO system of the IRMOS near-infrared multi-object spectrograph for TMT

    No full text
    The near-Infrared Multi-Object Spectrograph (IRMOS) for TMT is one of the most powerful astronomical instruments ever envisioned. The combination of the collecting area of TMT, the unique image-sharpening capabilities of the Multi-Object Adaptive Optics (MOAO) system, and the multiplexing advantage of the multi-object integral-field spectra provided by the IRMOS back-end make it capable of addressing some of the leading scientific challenges of the coming decades. Here we present an overview of one potential IRMOS concept and then focus on the MOAO system. In particular we will describe our concept for the laser and natural guide star wavefront sensors, deformable mirrors and the calibration system of MOAO. For each of these design elements, we describe the key trade studies which help define each subsystem. From results of our studies, we assemble a MOAO ensquared energy budget. We find that 50% of the energy is ensquared within the 50 milli-arcsecond spatial pixel of the IRMOS integral field units for a wavelength of 1.65ÎŒm. Given the requirements placed on the MOAO system to achieve this performance, large ensquared energies can be achieved with even finer plate scales for wavelengths longer than 1.5ÎŒm

    Pathology in Practice

    No full text
    corecore